Find the absolute maximum value of $y=x^{3}-6 x^{2}+9 x-2$ on the interval $[0,5]$.

- A. 2
- B. 18
- C. 6
- D. 10
- E. 14

Correct Answers:

- B

Where is the function $f(x)=e^{-x}(2 x-3)$ decreasing?

- A. $(-\infty, 1.5]$
- B. $[2.5, \infty)$
- C. $(-\infty, \infty)$
- D. $(-\infty, 2.5]$
- E. $[1.5, \infty)$

Correct Answers:

- B

Where does the function $f(x)=x^{3}-3 x^{2}$ have a point of inflection?

- A. $x=1$
- B. $x=2$
- C. $x=-4$
- D. $x=3$
- E. $x=0$

Correct Answers:

- A

Find the number c that satisfies the conclusion of the Mean Value Theorem for $f(x)=2 \sqrt{x}$ on the interval [0,25$]$.

- A. $c=0$
- B. $c=25 / 4$
- C. $c=5$
- D. $c=1 / 5$
- E. None of the above

Correct Answers:

- B

The function $f(x)=x^{2}-6 x+13$ satisfies the hypotheses of Rolle's Theorem on the interval [0,6$]$. Find all values of c that satisfy the conclusion of the theorem.

- A. $c=2$ and $c=3$
- B. $c=3$ only
- C. $c=2$ only
- D. $c=3$ and $c=4$
- E. $c=2$ and $c=4$

Correct Answers:

- B

Use Part I of the Fundamental Theorem of Calculus to find the derivative of the function

$$
h(x)=\int_{1}^{x} \frac{1}{t^{2}+2} d t .
$$

- A. $h^{\prime}(x)=\frac{1}{3}$
- B. $h^{\prime}(x)=-\frac{2}{9}$
- C. $h^{\prime}(x)=-\frac{2 x}{\left(x^{2}+2\right)^{2}}$
- D. $h^{\prime}(x)=\frac{1}{x^{2}+2}$
- E. None of the above

Correct Answers:

- D

Find the value of the limit:

$$
\lim _{x \rightarrow 0} 3 \frac{\tan 4 x-4 x}{x^{3}}
$$

- A. 124
- B. 64
- C. 114
- D. 54
- E. 134

Correct Answers:

- B

Find $f(t)$ if $f^{\prime}(t)=2 t-4 \sin (t)$ and $f(0)=5$.

- A. $f(t)=t^{2}+4 \cos (t)$
- B. $f(t)=2 t-4 \sin (t)+5$
- C. $f(t)=t^{2}+4 \cos (t)-5$
- D. $f(t)=t^{2}+4 \cos (t)+1$
- E. None of the above

Correct Answers:

- D

Let $p(x)$ and $q(x)$ be polynomials. Find

$$
\lim _{x \rightarrow \infty} \frac{p(x)}{q(x)}
$$

if the degree of $p(x)$ is 2 and the degree of $q(x)$ is 6 .

- A. 9
- B. -4
- C. 5
- D. 4
- E. 0

Correct Answers:

- E

Find all of the critical numbers for the function $g(x)=2 x^{3}-5 x^{2}+4 x-145$.

- A. $x= \pm \sqrt{145}$
- B. $x=0$ only
- C. $x=2$ and $x=3$
- D. $x=5$ only
- E. $x=\frac{2}{3}$ and $x=1$

Correct Answers:

- E

Evaluate the indefinite integral $\int\left(28 t^{3}-6 t^{-3}\right) d t$.

- A. $84 t^{2}+18 t^{-4}+C$
- B. $7 t^{4}+3 t^{-2}+C$
- C. $t^{4}-\ln (t)+C$
- D. $84 t^{4}+2 t^{-2}+C$
- E. $7 t^{2}-6 t^{-2}+C$

Correct Answers:

- B

An athlete runs with velocity $24 \mathrm{~km} / \mathrm{h}$ for 10 minutes, $18 \mathrm{~km} / \mathrm{h}$ for 5 minutes, and $30 \mathrm{~km} / \mathrm{h}$ for 5 minutes. Compute the total distance traveled.
-A. 6 km

- B. 8 km
-C. 9 km
- D. 7 km
- E. 5 km
- B

If $\int_{0}^{6} f(x) d x=13$ and $\int_{0}^{4} f(x) d x=7$, find $\int_{4}^{6} f(x) d x$.

- A. 6
- B. -6
- C. 13
- D. 7
- E. 20

Correct Answers:

- A

Evaluate the Riemann sum for $f(x)=6-x^{2}, 0 \leq x \leq 2$ with four subintervals, taking the sample points to be the right endpoints.

- A. 8.25
- B. 10.75
- C. 10.25
- D. 9.25
- E. 9.75

Correct Answers:

- A

Given that the graph of $f(x)$ passes through the point $(4,69)$ and that the slope of its tangent line at $(x, f(x))$ is $10 x-6$, find $f(1)$.

- A. 12
- B. -4.5
- C. 11
- D. 8
- E. 1

Correct Answers:

- A

16. (1 point) local/GlobalPandemic/Exam03_S21/MA113_Exam03_Problem16.pg

Given that $\int_{1}^{5} f(x) d x=3$, evaluate the integral $\int_{1}^{5} 3 f(x) d x$.
Answer:
Correct Answers:

- 9

17. (1 point) local/GlobalPandemic/Exam03_S21/MA113_Exam03_Problem17.pg

The general antiderivative of $f(x)=-8 x^{5}-x^{3}+\frac{21}{x^{2}}$ is
Correct Answers:

- $(-1.33333) * x^{\wedge} 6+(-0.25) * x^{\wedge} 4-21 / x+C$

18. (1 point) local/GlobalPandemic/Exam03_S21/MA113_Exam03_Problem18.pg Find the derivative:

$$
\frac{d}{d x} \int_{5}^{x} \sec (6 x+1) d x
$$

$f^{\prime}(x)=$
Correct Answers:

- $\sec (6 * x+1)$

19. (1 point) local/GlobalPandemic/Exam03_S21/MA113_Exam03_Problem19.pg

Evaluate the integrals for $f(x)$ shown in the figure below. The two parts of the graph are semicircles.

a) $\int_{0}^{2} 2 f(x) d x=$ \qquad
b) $\int_{0}^{6} 2 f(x) d x=$

Correct Answers:

- -3.14159
- 9.42478

20. (1 point) local/GlobalPandemic/Exam03_S21/MA113_Exam03_Problem20.pg

The rate (in mg carbon/(cubic meter)/hour) at which photosynthesis takes place for a species of phytoplankton is modeled by the function

$$
P=\frac{20 I}{I^{2}+I+4}
$$

where I is the light intensity (measured in thousands of foot-candles). For what light intensity is P a maximum?
$I=$
Correct Answers:

- 2

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

