Math 113 Exam 4 Fall 2015 Solutions

December 10, 2016

Multiple choice

BECBC CBACA

Free Response

11. The graph is:

To find the points of intersection, solve $x^{2}+2=2 x+5$ or $x^{2}-2 x-3=0$ to find $x=-1, x=3$. The top curve is $y=2 x+5$ and the bottom curve is $y=x^{2}+2$. Hence the area between the two curves is given by the integral

$$
\begin{aligned}
& \int_{-1}^{3}(2 x+5)-\left(x^{2}+2\right) d x= \\
& \int_{-1}^{3}\left(3+2 x-x^{2}\right) d x=44 / 3
\end{aligned}
$$

12. (a) Since $h^{\prime}(x)=4 x^{3}-16 x=4 x\left(x^{2}-4\right)$, the critical points are $x= \pm 2$ and $x=0$. All of these lie in the interval $[-4,3]$. The sign graph for the derivative is

(b) We can evaluate h at the critical points and endpoints to find

x	$f(x)$	
-4	144	absolute max
-2	0	absolute min
0	16	local max
2	0	absolute min
3	25	neither max nor min

Although it's not required for this problem, here is a graph of the function (the y-axis is not to scale) which shows what's going on. We don't show the point $(-4,144)$ because it's literally off the charts!

13. (a) Factor $v(t)=3\left(t^{2}-8 t+12\right)=3(t-2)(t-6)$ and note that $v(t)$ is positive on $(-\infty, 2)$ and $(6, \infty)$, while $v(t)$ is negative on $(2,6)$. Hence, the particle is moving forward in $(0,2)$, and backward in $(2,6)$.
(b) The displacement is the integral of $v(t)$. This is

$$
\int_{0}^{6}\left(3 t^{2}-24 t+36\right) d t=0 \mathrm{~m}
$$

(c) The total distance travelled is the integral of $|v(t)|$. This is

$$
\int_{0}^{2}\left(3 t^{2}-24 t+36\right) d t+\int_{2}^{6}-\left(3 t^{2}-24 t+36\right) d t=64 \mathrm{~m}
$$

14. We can use the constraint $4 x+y=9$ to write $y=9-4 x$. Hence we need to maximize $M(x)=x^{2}(9-4 x)$ on $(0, \infty)$. Since $M^{\prime}(x)=18 x-12 x^{2}=$ $6 x(3-2 x)$ we get critical points at $x=0$ and $x=3 / 2$. The sign graph of $M^{\prime}(x)$ on $(0, \infty)$ is

By the first derivative test for absolute extrema on an interval, the function $M(x)$ has an absolute maximum on $(0, \infty)$ at $x=3 / 2$, corresponding to $y=3$. Hence, the numbers are $x=3 / 2, y=3$.
15. Let x be the distance of car 1 from the starting point, and let y be the distance of car 2 from the starting point. The picture looks like

The distance between the two cars is $D=\sqrt{x^{2}+y^{2}}$. We know that

$$
\frac{d x}{d t}=20 \mathrm{mph}, \quad \frac{d y}{d t}=40 \mathrm{mph}
$$

After two hours $x=40$ miles, $y=80$ miles, so the distance D between the two cars is $40 \sqrt{5} \mathrm{~m}$. By implicit differentiation,

$$
\frac{d D}{d t}=\frac{1}{2 \sqrt{x^{2}+y^{2}}}\left(2 x \frac{d x}{d t}+2 y \frac{d y}{d t}\right)
$$

so at $t=2$ we get

$$
\frac{d D}{d t}=\frac{1}{80 \sqrt{5}}(80 \cdot 20+160 \cdot 40)=\frac{100}{\sqrt{5}}=20 \sqrt{5} \mathrm{mph} .
$$

Of course, there is actually a much quicker way to do this problem. You can compute $x(t)=20 t, y(t)=40 t$, so that by the Pythagorean Theorem $D(t)=20 \sqrt{5} t$. By straightforward differentiation, $D^{\prime}(t)=20 \sqrt{5}$.

