Worksheet \# 4: Basic Limit Laws

1. Given $\lim _{x \rightarrow 2} f(x)=5$ and $\lim _{x \rightarrow 2} g(x)=2$, use limit laws (justify your work) to compute the following limits. Note when working through a limit problem that your answers should be a chain of equalities. Make sure to keep the $\lim _{x \rightarrow a}$ operator until the very last step.
(a) $\lim _{x \rightarrow 2} 2 f(x)-g(x)$
(b) $\lim _{x \rightarrow 2} \frac{f(x) g(x)}{x}$
(c) $\lim _{x \rightarrow 2} f(x)^{2}+x \cdot g(x)^{2}$
(d) $\lim _{x \rightarrow 2}[f(x)]^{\frac{3}{2}}$
2. Calculate the following limits if they exist or explain why the limit does not exist.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
(b) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-2}$
(c) $\lim _{x \rightarrow 2^{+}} \frac{x^{2}-1}{x-2}$
(d) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$
3. Can the quotient law of limits be applied to evaluate $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?
4. Find the value of c such that $\lim _{x \rightarrow 2} \frac{x^{2}+3 x+c}{x-2}$ exists. What is the limit?
5. find the value of c such that $\lim _{x \rightarrow 5}\left\{\begin{array}{ll}2 x+c & \text { if } x \leq 5 \\ -3 x & \text { if } x>5\end{array}\right.$ exists. What is the limit?
6. Show that $\lim _{h \rightarrow 0} \frac{|h|}{h}$ does not exist by examining one-sided limits. Then sketch the graph of $\frac{|h|}{h}$ and check your reasoning.
7. True or False:
(a) Let $f(x)=\frac{(x+2)(x-1)}{x-1}$ and $g(x)=x+2$. Then $f(x)=g(x)$.
(b) Let $f(x)=\frac{(x+2)(x-1)}{x-1}$ and $g(x)=x+2$. Then $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} g(x)$.
(c) If both the one-sided limits of $f(x)$ exist as x approaches a, then $\lim _{x \rightarrow a} f(x)$ exists.
(d) If $\lim _{x \rightarrow a} f(x)$ exists then $\lim _{x \rightarrow a} f(x)=f(a)$.
8. Draw a graph of two functions $f(x)$ and $g(x)$ such that $\lim _{x \rightarrow 0}(f(x)+g(x))$ exist but neither $\lim _{x \rightarrow 0} f(x)$ nor $\lim _{x \rightarrow 0} g(x)$ exist.
