Worksheet \# 7: Trigonometric Functions and Limits

1. Let $\pi \leq \alpha \leq \frac{3 \pi}{2}$ and $|\cos (\alpha)|=\frac{5}{12}$. Find $\sin (\alpha)$
2. Evaluate (without using your calculator) $\tan \left(\sin ^{-1}(-3 / 5)\right)$.
3. Let $f(x)=\sin (x)$ for x satisfying $\pi / 2 \leq x \leq 3 \pi / 2$. Sketch the graphs of f and f^{-1}.
4. Evaluate $\cos ^{-1}(\cos (5 \pi / 2))$.
5. Only one of the following statements is true. Which one?
(a) $\cos \left(\cos ^{-1}(x)\right)=x$
(b) $\cos ^{-1}(\cos (x))=x$.
6. Let $f(x)=1+x^{2} \sin (1 / x)$ for $x \neq 0$. Find two simpler functions g and h so that we can use the squeeze theorem to show $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} h(x)$. Give the common value of the limits.
7. Let n be a positive integer, evaluate the limit $\lim _{t \rightarrow 0} \frac{\tan (n t)}{t \sec t}$
8. Evaluate the limit $\lim _{h \rightarrow 0} \frac{1-\cos h}{h^{2}}$. Hint: Multiply and divide by $1+\cos h$
9. Evaluate the limit $\lim _{t \rightarrow 0} \frac{\sqrt{1-\cos t}}{t}$
10. Evaluate the limit $\lim _{t \rightarrow \frac{\pi}{2}} \frac{1-\cos t}{t}$
11. Evaluate the limit $\lim _{t \rightarrow 0} \frac{\sin (2 t)(1-\cos (3 t))}{t^{2}}$
12. Let k and m be positive constants, find $\lim _{x \rightarrow 0} \frac{\sec (k x)-1}{m x}$

The following identity may be useful for the next problems.

$$
\begin{equation*}
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) \tag{1}
\end{equation*}
$$

13. Use equation (1), to simplify the limit

$$
\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos (x)}{h}
$$

14. Evaluate the limits:
(a) Evaluate the limit $\lim _{t \rightarrow 0} \frac{t^{2}}{\sin t}$.
(b) Find the limit $\lim _{t \rightarrow 0} \frac{\cos (5 t)-\cos ^{2}(5 t)}{t}$.
(c) Evaluate the limit $\lim _{x \rightarrow 0} \frac{\tan (11 x)}{5 x}$.
(d) Evaluate the limit $\lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{\cos (x)-1}$ Hint: Use equation (1)
(e) Evaluate the limit $\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x^{2}}$. Hint: Multiply and divide by $1+\cos (3 x)$
(f) Evaluate the limit $\lim _{x \rightarrow 0} \frac{\cos x-\cos 3 x}{x^{2}}$. Hint: Use equation (1) to rewrite $\cos (3 x)$ as $\cos (x+2 x)$
