Worksheet \# 8: Review for Exam I

1. Find all real numbers of the constant a and b for which the function $f(x)=a x+b$ satisfies:
(a) $f \circ f(x)=f(x)$ for all x.
(b) $f \circ f(x)=x$ for all x.
2. Simplify the following expressions.
(a) $\log _{5} 125$
(b) $\left(\log _{4} 16\right)\left(\log _{4} 2\right)$
(c) $\log _{15} 75+\log _{15} 3$
(d) $\log _{x}\left(x\left(\log _{y} y^{x}\right)\right)$
(e) $\log _{\pi}(1-\cos x)+\log _{\pi}(1+\cos x)-2 \log _{\pi} \sin x$
3. (a) Solve the equation $3^{2 x+5}=4$ for x. Show each step in the computation.
(b) Express the quantitiy $\log _{2}\left(x^{3}-2\right)+\frac{1}{3} \log _{2}(x)-\log _{2}(5 x)$ as a single logarithm.
4. Calculate the following limits using the limit laws. Carefully show your work and use only one limit law per step.
(a) $\lim _{x \rightarrow 0}(2 x-1)$
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$
5. Calculate the following limits if they exist or explain why the limit does not exist.
(a) $\lim _{x \rightarrow 1} \frac{x-2}{\frac{1}{x}-\frac{1}{2}}$
(b) $\lim _{x \rightarrow 2} \frac{x-2}{\frac{1}{x}-\frac{1}{2}}$
(c) $\lim _{x \rightarrow 2} \frac{x^{2}}{x-2}$
(d) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x^{2}-16}$
(e) $\lim _{x \rightarrow 2} \frac{x+1}{x-2}$
6. Use the fact that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ to find $\lim _{x \rightarrow 0} \frac{x}{\sin (3 x)}$.
7. (a) State the Squeeze Theorem.
(b) Use the Squeeze Theorem to find the limit $\lim _{x \rightarrow 0} x \sin \frac{1}{x^{2}}$
8. Use the Squeeze Theorem to find $\lim _{x \rightarrow \frac{\pi}{2}} \cos x \cos (\tan x)$
9. If $f(x)=\frac{|x-3|}{x^{2}-x-6}$, find $\lim _{x \rightarrow 3^{+}} f(x), \lim _{x \rightarrow 3^{-}} f(x)$ and $\lim _{x \rightarrow 3} f(x)$.
10. (a) State the definition of the continuity of a function $f(x)$ at $x=a$.
(b) Find the constant a so that the function is continuous on the entire real line.

$$
f(x)= \begin{cases}\frac{x^{2}-a^{2}}{x-a} & \text { if } x \neq a \\ 8 & \text { if } x=a\end{cases}
$$

11. Complete the following statements:
(a) A function $f(x)$ passes the horizontal line test, if the function f is \qquad
(b) If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \text { provided }
$$

(c) $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L$ if and only if
(d) Let $g(x)=\left\{\begin{array}{ll}x & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{array}\right.$ be a piecewise function.

The function $g(x)$ is NOT continuous at $x=2$ since \qquad
(e) Let $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x<0 \\ 1 & \text { if } x=0 \\ x & \text { if } x>0\end{array}\right.$ be a piecewise function.

The function $f(x)$ is NOT continuous at $x=0$ since \qquad

