Worksheet \# 10: Derivatives

1. Comprehension check:
(a) Are differentiable functions also continuous? Are continuous functions also differentiable?
(b) What does the derivative of $f(x)$ at $x=a$ describe graphically?
(c) True or false: If $f^{\prime}(x)=g^{\prime}(x)$ then $f(x)=g(x)$?
(d) True or false: $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
(e) How is the number e defined?
2. Consider the graph below of the function $f(x)$ on the interval $[0,5]$.

(a) For which x values would the derivative $f^{\prime}(x)$ not be defined?
(b) Sketch the graph of the derivative function f^{\prime}.
3. Find $f^{\prime}(a)$ using either form of the definition for the derivative:
(a) $f(x)=3 x^{2}-2 x+1, a=2$.
(b) $f(x)=\frac{1}{x+3}, a=-1$.
(c) $f(x)=\sqrt{x}, a=9$.
4. Let

$$
h(t)= \begin{cases}a t+b & \text { if } t \leq 0 \\ t^{3}+1 & \text { if } t>0\end{cases}
$$

Find a and b so that h is differentiable at $t=0$.
5. Compute the derivative of the following functions:
(a) $f(x)=\frac{9}{4} x^{8}$
(b) $h(x)=3 e^{x}+x^{2}+1$
(c) $k(x)=\frac{A}{x^{4}}+B x^{2}+C x+D$
(d) $l(x)=\left(x+\frac{1}{x}\right)^{2}$
6. Find an equation for the tangent line to the curve $y=x^{3 / 2}+2$ at $x=3$.
7. Find the equation of each tangent line to the parabola $y=x^{2}$ which pass through the point $(0,-1)$. First sketch the graph of the parabola and the desired tangent line(s).
8. Consider the function $f(x)=x^{4}-x^{3}-8 x^{2}+25 x+10$. Use the Intermediate Value Theorem to show that the graph of f has a horizontal tangent line between $x=-3$ and $x=-2$.
9. Find a function f and a number a so that the following limit represents a derivative $f^{\prime}(a)$.

$$
\lim _{h \rightarrow 0} \frac{(4+h)^{3}-64}{h}
$$

