Worksheet \# 13: Chain Rule

1. (a) Carefully state the chain rule using complete sentences.
(b) Suppose f and g are differentiable functions so that $f(2)=3, f^{\prime}(2)=-1, g(2)=\frac{1}{4}$, and $g^{\prime}(2)=2$. Find each of the following:
i. $h^{\prime}(2)$ where $h(x)=\sqrt{[f(x)]^{2}+7}$.
ii. $l^{\prime}(2)$ where $l(x)=f\left(x^{3} \cdot g(x)\right)$.
2. Given the following functions: $f(x)=\sec (x)$, and $g(x)=x^{3}-2 x+1$. Find:
(a) $f(g(x))=$
(b) $f^{\prime}(x)=$
(c) $g^{\prime}(x)=$
(d) $f^{\prime}(g(x))=$
(e) $(f \circ g)^{\prime}(x)=$
3. Differentiate each of the following and simplify your answer.
(a) $f(x)=\sqrt[3]{2 x^{3}+7 x+3}$
(b) $g(t)=\tan (\sin (t))$
(c) $h(u)=\sec ^{2}(u)+\tan ^{2}(u)$
(d) $f(x)=x e^{\left(3 x^{2}+x\right)}$
(e) $g(x)=\sin (\sin (\sin (x)))$
4. Find an equation of the tangent line to the curve at the given point.
(a) $f(x)=x^{2} e^{3 x}, x=2$
(b) $f(x)=\sin (x)+\sin ^{2}(x), x=0$
5. Compute the derivative of $\frac{x}{x^{2}+1}$ in two ways:
(a) Using the quotient rule.
(b) Rewrite the function $\frac{x}{x^{2}+1}=x\left(x^{2}+1\right)^{-1}$ and use the product and chain rule.

Check that both answers give the same result.
6. If $h(x)=\sqrt{4+3 f(x)}$ where $f(1)=7$ and $f^{\prime}(1)=4$, find $h^{\prime}(1)$.
7. Let $h(x)=f \circ g(x)$ and $k(x)=g \circ f(x)$ where some values of f and g are given by the table

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
-1	4	4	-1	-1
2	3	4	3	-1
3	-1	-1	3	-1
4	3	2	2	-1

Find: $h^{\prime}(-1), h^{\prime}(3)$ and $k^{\prime}(2)$.
8. Find all x values so that $f(x)=2 \sin (x)+\sin ^{2}(x)$ has a horizontal tangent at x.
9. Comprehension check for derivatives of trigonometric functions:
(a) True or False: If $f^{\prime}(\theta)=-\sin (\theta)$, then $f(\theta)=\cos (\theta)$.
(b) True or False: If θ is one of the non-right angles in a right triangle and $\sin (\theta)=\frac{2}{3}$, then the hypotenuse of the triangle must have length 3 .
(c) Differentiate both sides of the identity $\tan (x)=\frac{\sin (x)}{\cos (x)}$ to obtain a new trigonometric identity.

