Worksheet \# 17: Linear Approximation and Applications

1. For each of the following, use a linear approximation to the change in the function and a convenient nearby point to estimate the value:
(a) $(3.01)^{3}$
(b) $\sqrt{17}$
(c) $8.06^{2 / 3}$
(d) $\tan \left(44^{\circ}\right)$
2. What is the relation between the linearization of a function $f(x)$ at $x=a$ and the tangent line to the graph of the function $f(x)$ at $x=a$ on the graph?
3. Use the linearization of \sqrt{x} at $x=16$ to estimate $\sqrt{18}$;
(a) Find a decimal approximation to $\sqrt{18}$ using a calculator.
(b) Compute both the error and the percentage error.
4. Suppose we want to paint a sphere of radius 200 cm with a coat of paint .2 cm thick. Use a linear approximation to approximate the amount of paint we need to do the job.
5. Let $f(x)=\sqrt{16+x}$. First, find the linearization to $f(x)$ at $x=0$, then use the linearization to estimate $\sqrt{15.75}$. Present your solution as a rational number.
6. Find the linearization $L(x)$ to the function $f(x)=\sqrt{1-2 x}$ at $x=-4$.
7. Find the linearization $L(x)$ to the function $f(x)=\sqrt[3]{x+4}$ at $x=4$, then use the linearization to estimate $\sqrt[3]{8.25}$.
8. Your physics professor tells you that you can replace $\sin (\theta)$ with θ when θ is close to zero. Explain why this is reasonable.
9. Suppose we measure the radius of a sphere as 10 cm with an accuracy of $\pm .5 \mathrm{~cm}$. Use linear approximations to estimate the maximum error in:
(a) the computed surface area.
(b) the computed volume.
10. Suppose that $y=y(x)$ is a differentiable function which is defined near $x=2$, satisfies $y(2)=-1$ and

$$
x^{2}+3 x y^{2}+y^{3}=9 .
$$

Use the linear approximation to the change in y to approximate the value of $y(1.91)$.

