Worksheet \# 23: Approximating Area

1. Write each of following in summation notation:
(a) $1+2+3+4+5+6+7+8+9+10$
(b) $2+4+6+8+10+12+14$
(c) $2+4+8+16+32+64+128$.
2. Compute $\sum_{i=1}^{4}\left(\sum_{j=1}^{3}(i+j)\right)$.

The following summation formulas will be useful below.

$$
\sum_{j=1}^{n} j=\frac{n(n+1)}{2}, \quad \sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

3. Find the number n such that $\sum_{i=1}^{n} i=78$.
4. Give the value of the following sums.
(a) $\sum_{j=1}^{20}\left(2 k^{2}+3\right)$
(b) $\sum_{j=11}^{20}(3 k+2)$
5. The velocity of a train at several times is shown in the table below. Assume that the velocity changes linearly between each time given.

$\mathrm{t}=$ time in minutes	0	3	6	9
$\mathrm{v}(\mathrm{t})=$ velocity in Km / h	20	80	100	140

(a) Plot the velocity of the train versus time.
(b) Compute the left and right-endpoint approximations to the area under the graph of v.
(c) Explain why these approximate areas are also an approximation to the distance that the train travels.
6. Let $f(x)=1 / x$. Divide the interval $[1,3]$ into five subintervals of equal length and compute R_{5} and L_{5}, the left and right endpoint approximations to the area under the graph of f in the interval $[1,3]$. Is R_{5} larger or smaller than the true area? Is L_{5} larger or smaller than the true area?
7. Let $f(x)=\sqrt{1-x^{2}}$. Divide the interval $[0,1]$ into four equal subintervals and compute L_{4} and R_{4}, the left and right-endpoint approximations to the area under the graph of f. Is R_{4} larger or smaller than the true area? Is L_{4} larger or smaller than the true area? What can you conclude about the value π ?
8. Let $f(x)=x^{2}$.
(a) If we divide the interval $[0,2]$ into n equal intervals of equal length, how long is each interval?
(b) Write a sum which gives the right-endpoint approximation R_{n} to the the area under the graph of f on $[0,2]$.
(c) Use one of the formulae for the sums of powers of k to find a closed form expression for R_{n}.
(d) Take the limit of R_{n} as n tends to infinity to find an exact value for the area.

