Worksheet \# 25: Net Change and The Substitution Method

1. A population of rabbits at time t increases at a rate of $40-12 t+3 t^{2}$ rabbits per year. Find the population after 8 years if there are 10 rabbits at $t=0$.
2. Suppose the velocity of a particle traveling along the x-axis is given by $v(t)=3 t^{2}+8 t+15 \mathrm{~m} / \mathrm{s}$ and the particle is initially located 5 meters left of the origin. How far does the particle travel from $t=2$ seconds to $t=3$ seconds? After 3 seconds, where is the particle with respect to the origin?
3. Suppose an object traveling in a straight line has a velocity function given by $v(t)=t^{2}-8 t+15 \mathrm{~km} / \mathrm{hr}$. Find the displacement and distance traveled by the object from $t=2$ to $t=4$ hours.
4. An oil storage tank ruptures and oil leaks from the tank at a rate of $r(t)=100 e^{-0.01 t}$ liters per minute. How much oil leaks out during the first hour?
5. Evaluate the following indefinite integrals, and indicate any substitutions that you use:
(a) $\int \frac{4}{(1+2 x)^{3}} d x$
(d) $\int \sec ^{3}(x) \tan (x) d x$
(b) $\int x^{2} \sqrt{x^{3}+1} d x$
(e) $\int e^{x} \sin \left(e^{x}\right) d x$
(c) $\int \cos ^{4}(\theta) \sin (\theta) d \theta$
(f) $\int \frac{2 x+3}{x^{2}+3 x} d x$
6. Evaluate the following definite integrals, and indicate any substitutions that you use:
(a) $\int_{0}^{7} \sqrt{4+3 x} d x$
(d) $\int_{e}^{e^{4}} \frac{d x}{x \sqrt{\ln x}}$
(b) $\int_{0}^{\frac{\pi}{2}} \cos (x) \cos (\sin (x)) d x$
(e) $\int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^{2}} d x$
(c) $\int_{0}^{4} \frac{x}{\sqrt{1+2 x^{2}}} d x$
7. Assume f is a continuous function.
(a) If $\int_{0}^{9} f(x) d x=4$, find $\int_{0}^{3} x \cdot f\left(x^{2}\right) d x$.
(b) If $\int_{0}^{u} f(x) d x=1+e^{u^{2}}$ for all real numbers u, find $\int_{0}^{2} f(2 x) d x$.
