Worksheet \# 29: Review II for Final

1. Compute the following limits.
(a) $\lim _{t \rightarrow 9} \frac{9-t}{3-\sqrt{t}}$
(c) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}$
(b) $\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{10 \theta}$
(d) $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x}$
2. (a) State the limit definition of the continuity of a function f at $x=a$.
(b) State the limit definition of the derivative of a function f at $x=a$.
(c) Given $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x<1 \\ 4-3 x & \text { if } x \geq 1\end{array}\right.$. Is the function continuous at $x=1$? Is the function differentiable at $x=1$? Use the definition of the derivative. Graph the function to check your answer.
3. Provide the most general antiderivative of the following functions:
(a) $f(x)=x^{4}+x^{2}+x+1000$
(b) $g(x)=(3 x-2)^{20}$
(c) $h(x)=\frac{\sin (\ln (x))}{x}$
4. Use implicit differentiation to find $\frac{d y}{d x}$, and compute the slope of the tangent line at $(1,2)$ for the following curves:
(a) $x^{2}+x y+y^{2}+9 x=16$
(b) $x^{2}+2 x y-y^{2}+x=2$
5. An rock is thrown up the in the air and returns to the ground 4 seconds later. What is the initial velocity? What is the maximum height of the rock? Assume that the rock's motion is determined by the acceleration of gravity, 9.8 meters $/$ second 2.
6. A conical tank with radius 5 meters and height 10 meters is being filled with water at a rate of 3 cubic meters per minute. How fast is the water level increasing when the water's depth is 3 meters?
7. A rectangular storage container with an open top is to have a volume of 10 cubic meters. The length of the container is twice its width. Material for the base costs $\$ 10$ per square meter while material for the sides costs $\$ 6$ per square meter. Find the cost of materials for the least expensive possible container.
8. (a) State the Mean Value Theorem.
(b) If $3 \leq f^{\prime}(x) \leq 5$ for all x, find the maximum possible value for $f(8)-f(2)$.
9. Use linearization to approximate $\cos \left(\frac{11 \pi}{60}\right)$
(a) Write down $L(x)$ at an appropriate point $x=a$ for a suitable function $f(x)$.
(b) Use part(a) to find an approximation for $\cos \left(\frac{11 \pi}{60}\right)$
(c) Find the absolute error in your approximation.
10. Find the value(s) c such that $f(x)$ is continuous everywhere.

$$
f(x)= \begin{cases}(c x)^{3} & \text { if } x<2 \\ \ln \left(x^{c}\right) & \text { if } x \geq 2\end{cases}
$$

11. (a) Find y^{\prime} if $x^{3}+y^{3}=6 x y$.
(b) Find the equation of the tangent line at $(3,3)$.
12. Show that the function $f(x)=3 x^{5}-20 x^{3}+60 x$ has no absolute maximum or minimum.
13. Compute the following definite integrals:
(a) $\int_{-1}^{1} e^{u+1} d u$
(c) $\int_{1}^{9} \frac{x-1}{\sqrt{x}} d x$
(b) $\int_{-2}^{2} \sqrt{4-x^{2}} d x$
(d) $\int_{0}^{10}|x-5| d x$

Hint: For some of the integrals, you will need to interpret the integral as an area and use facts from geometry to compute the integral.
14. Write as a single integral in the form $\int_{a}^{b} f(x) d x$:

$$
\int_{-2}^{2} f(x) d x+\int_{2}^{5} f(x) d x-\int_{-2}^{-1} f(x) d x
$$

