PLEASE, BE NEAT AND SHOW ALL YOUR WORK; CIRCLE YOUR ANSWER.

Problem	Possible	Points
Number	Points	Earned
1	15	
2	10	
3	20	
4	25	
5	15	
6	15	
Bonus	5	
TOTAL	100	

1. (*a*) Define the function $\ln x$ for x > 0.

(b) If a, b are any positive real numbers and r is a rational number then

- (c) Simplify the following expressions
 - * $\ln \sec \theta + \ln \cos \theta =$

*
$$\left(e^{\ln y - \ln x}\right)^{-1} + \frac{1}{y}\ln(e^x) =$$

2. (a) Find g'(2) = ______ where g(x) is the inverse of the function $f(x) = x^5 - x^3 + 2x$.

(b) $\lim_{x \to \infty} \ln(2+x) - \ln(1+x) =$ _____.

3. Find the derivative of the following functions:

(a)
$$y = \ln(\ln(\ln x))$$

(b)
$$y = \sqrt[3]{\frac{x(x+1)(x-2)}{(x^2+1)(2x+3)}}$$
 (b)

(use logarithmic differentiation)

$$(c) \quad y = \ln\left(\frac{e^x}{1+e^x}\right)$$

(d)
$$y = x \tan^{-1} x + \ln \sqrt{1 - x^2}$$
.

4. Find the following integrals:

(a)
$$\int_0^{\sqrt{\ln \pi}} 2x e^{x^2} \cos e^{x^2} dx;$$

$$(b) \quad \int_2^{16} \frac{dx}{2x\sqrt{\ln x}};$$

$$(c) \quad \int \frac{2^{\ln x}}{x} dx;$$

(d)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{2\cos\theta}{1+\sin^2\theta} d\theta;$$

$$(e) \int \frac{\sec^2 y \, dy}{\sqrt{1 - \tan^2 y}}.$$

Newton's Law of Cooling states that the rate at which an object changes temperature is proportional to the difference between its temperature and the temperature of the surrounding environment. In other words, if T_S is the (constant) temperature of the environment, the temperature T(t) of the object at time t satisfies

$$\frac{d}{dt}T(t) = k(T(t) - T_S)$$

for some negative constant k. Let T_0 denote the temperature of the object at time t = 0. It was shown in class that the function T(t) is given by

$$T(t) = T_S + (T_0 - T_S)e^{kt}$$
 $k < 0.$

5. A pan of warm water $(46^{\circ}C)$ was put in a refrigerator. Ten minutes later the water's temperature was $39^{\circ}C$; 10 minutes after that, it was $33^{\circ}C$. Use Newton's Law to estimate how cold the refrigerator was.

6. Use l'Hôpital's rule to find the following limits:

(a)
$$\lim_{x \to 0} \frac{e^x - x - 1}{x^2} =$$
____;

(b)
$$\lim_{x \to 1} \frac{\ln x}{x-1} = \underline{\qquad};$$

(c)
$$\lim_{x \to \infty} \frac{\ln(\ln x)}{\sqrt{x}} =$$
_____.

Bonus. Choose one of the following questions.

(a) Simplify the following expression: $\operatorname{sech}(\ln x) =$ ____;

(b) Find the derivative of the following function: $f(x) = e^{\tanh x} \ln(\sinh x)$;

(c) Evaluate the following integral: $\int_0^{\ln 2} \tanh(2x) dx =$ _____.

