MA 114 — Calculus II Fall 2014 Sections 1 – 8 and 401, 402

Exam 1

Sep. 23, 2014

Name: _____

Section:

Last 4 digits of student ID #: _____

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.
- Multiple Choice Questions: Record your answers on the right of this cover page by marking the box corresponding to the correct answer.
- Free Response Questions: Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.

Multiple Choice Answers

Question					
1	А	В	С	D	Е
2	А	В	С	D	Е
3	А	В	С	D	Е
4	А	В	С	D	Е

Exam Scores

Question	Score	Total
MC		20
5		15
6		16
7		16
8		15
9		18
Total		100

Unsupported answers for the free response questions may not receive credit!

Record the correct answer to the following problems on the front page of this exam.

- 1. Let a > 0 be a fixed number. Evaluate the improper integral $\int_a^{\infty} x^2 e^{-x^3} dx$.
 - A. ∞ .
 - B. 0.
 - C. $\frac{1}{3e^{a^3}}$.

D. e^{a^3} .

E. $-\frac{1}{e^{a^3}}$.

- 2. Let C > 1 be a fixed number. Which of the following answers is true for the series $\sum_{n=1}^{\infty} \frac{(-1)^n n}{Cn+17}?$
 - A. The series is divergent.
 - B. The series is absolutely convergent.
 - C. The series is convergent, but not absolutely convergent.
 - D. The series is absolutely convergent, but not convergent.
 - E. None of the above.

Record the correct answer to the following problems on the front page of this exam.

- **3.** Which of the following are true for a series $\sum_{n=1}^{\infty} a_n$? Check all that apply.
 - A. If the series is convergent, then it is also absolutely convergent.
 - B. If $\lim_{n \to \infty} a_n = 0$, then the series converges.
 - C. If $\lim_{n \to \infty} a_n \neq 0$, then the series diverges.
 - D. If the series is alternating, then it is convergent.
 - E. None of the above.

4. Evaluate the series
$$\sum_{n=0}^{\infty} 2^{3-2n}$$
.

A. The series is divergent.

B.
$$\sum_{n=0}^{\infty} 2^{3-2n} = 6.$$

C.
$$\sum_{n=0}^{\infty} 2^{3-2n} = 11.$$

D.
$$\sum_{n=0}^{\infty} 2^{3-2n} = \frac{32}{3}.$$

E.
$$\sum_{n=0}^{\infty} 2^{3-2n} = \frac{21}{2}.$$

5. Evaluate the integral

$$\int_2^{10} \frac{x}{\sqrt{x^2 - 4}} \, dx.$$

6. Use the limit comparison test to determine whether the series $\sum_{n=1}^{\infty} \frac{3}{\ln(n+1)}$ converges.

7. Determine whether the following series converges or diverges. Make sure to state all tests that you use.

(a)
$$\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{5+3^n}{100+4^n}$$

8. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$ is absolutely convergent, conditionally convergent or divergent. Make sure to state all tests that you use.

- 9. Consider the power series $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 4^n}$.
 - (a) Find the radius of convergence.

(b) Find the interval of convergence.