Exam 1

Name: \qquad Section: \qquad
Do not remove this answer page - you will return the whole exam. You will be allowed two hours to complete this test. You are allowed to use notes on a single piece of 8.5 " by 11 " paper, front and back, including formulas and theorems. You are required to turn this page in with your exam. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS). Absolutely no communication device use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show all work to receive full credit on the free response problems. It will also help you check your answers to show work on multiple choice problems.

Multiple Choice Questions

1

6 (A)
(B) (C)
(D) (E)
2
(A) (B)
(C)
(D)

7 (A)
(B) (C)
(D) E
3 (A)
(B) (C)
(D) E
8 (A)
(B) (C)
(D) (E)
4 (A)
(B)
(C)
(D)
(E)
9 (A)
(B) (C)
(D) (E)
5 A
(B)
(C)
(D)
(E)
10 (A)
(B) (C)
(D) (E)

Multiple Choice	11	12	13	14	15	Total Score
50	10	10	10	10	10	100

Multiple Choice Questions

1. (5 points) Find $\int x e^{3 x} d x$.
A. $\frac{1}{6} x^{2} e^{3 x}+C$
B. $\frac{1}{6} x^{2} e^{3 x+1}+C$
C. $3 x e^{3 x}-9 e^{3 x}+C$
D. $\frac{1}{3} x e^{3 x}-\frac{1}{9} e^{3 x}+C$
E. $\frac{1}{3} x e^{3 x}+\frac{1}{6} e^{3 x}+C$
2. (5 points) If $f(1)=7, f(4)=5, f^{\prime}(1)=10$ and $f^{\prime}(4)=6$, and $f^{\prime \prime}(x)$ is continuous, what is $\int_{1}^{4}(x+2) f^{\prime \prime}(x) d x$?
A. 1
B. 8
C. 31
D. 63
E. 64
3. (5 points) Find $\int(5+\sin (x))^{2} d x$.
A. $25 x+\frac{1}{3} \sin ^{3}(x)+C$
B. $25 x-10 \cos x(x)+\frac{1}{3} \sin ^{3}(x)+C$
C. $\frac{51}{2}+10 \sin (x)-\frac{1}{2} \cos (2 x)+C$
D. $\frac{51}{2} x-10 \cos (x)-\frac{1}{4} \sin (2 x)+C$
E. $\frac{51}{2} x-10 \cos (x)+\frac{1}{4} \cos (2 x)+C$
4. (5 points) Find $\int \cos ^{4}(\theta) \sin ^{3}(\theta) d \theta$.
A. $\frac{1}{5} \sin ^{5}(\theta)-\frac{1}{4} \cos ^{4}(\theta)+C$
B. $-\frac{1}{5} \cos ^{5}(\theta)+\frac{1}{7} \cos ^{7}(\theta)+C$
C. $\frac{1}{8}-\frac{1}{8} \sin ^{3}(2 \theta)+C$
D. $\frac{1}{8} \theta+\frac{1}{16} \cos (2 \theta)+\frac{1}{32} \cos ^{2}(2 \theta)+C$
E. $\frac{1}{20} \cos ^{5}(\theta) \sin ^{4}(\theta)+C$
5. (5 points) Which of the following is equal to the integral

$$
\int \frac{1}{\sqrt{x^{2}+9}} d x
$$

after making the substitution $x=3 \tan (\theta)$?
A. $\int 3 \tan (\theta) d \theta$
B. $\int \cot (\theta) d \theta$
C. $\int \sec (\theta) d \theta$
D. $\int \frac{\sec ^{2}(\theta)}{\tan (\theta)+1} d \theta$
E. $\int \frac{1}{3 \sec (\theta)} d \theta$
6. (5 points) Find

$$
\int_{0}^{1} \frac{1}{x^{3 / 2}} d x
$$

A. $-\infty$
B. -2
C. $\frac{2}{5}$
D. $\frac{5}{2}$
E. ∞
7. (5 points) What is the form of the partial fraction decomposition of

$$
\frac{4 x+7}{\left(x^{2}+3\right)\left(x^{3}-x\right)} ?
$$

A. $\frac{A}{x+3}+\frac{B}{x^{2}+3}+\frac{C}{x^{3}}+\frac{D}{x}$
B. $\frac{A x+B}{x^{2}+3}+\frac{C}{x}+\frac{D}{x+1}+\frac{E}{x-1}$
C. $\frac{A x+B}{x^{2}+3}+\frac{C}{x}+\frac{D x+E}{x^{2}-1}$
D. $\frac{A x+B}{x^{2}+3}+\frac{C x^{2}+D x+E}{x^{3}-x}$
E. $\frac{A}{x^{2}+3}+\frac{B}{x}+\frac{C}{x+1}+\frac{D}{x-1}$
8. (5 points) If $\tan (\theta)=\frac{x}{8}$, then what is $\cos (\theta)$?
A. $\frac{x}{\sqrt{x^{2}+64}}$
B. $\frac{\sqrt{64-x^{2}}}{x}$
C. $\frac{8}{\sqrt{64-x^{2}}}$
D. $\frac{8}{\sqrt{x^{2}+64}}$
E. $\frac{\sqrt{x^{2}+64}}{8}$
9. (5 points) Let $f(x)$ be a function that satisfies $\left|f^{\prime \prime}(x)\right| \leq 3$ on the interval $[1,7]$. Choose the smallest n so that we can be sure that $E_{T}=\left|T_{n}-\int_{1}^{7} f(x) d x\right| \leq .05$, where T_{n} is the trapezoidal approximation with n intervals.
A. $n=10$
B. $n=33$
C. $n=51$
D. $n=145$
E. $n=1083$
10. (5 points) Find the Simpson's rule estimate of $\int_{1}^{9} \frac{1}{\sqrt{x}} d x$ for $n=4$.
A. $\frac{2}{3}\left(\frac{1}{\sqrt{1}}+\frac{4}{\sqrt{2}}+\frac{2}{\sqrt{4}}+\frac{4}{\sqrt{6}}+\frac{1}{\sqrt{8}}\right)$
B. $\frac{4}{3}\left(\frac{1}{\sqrt{1}}+\frac{4}{\sqrt{5}}+\frac{1}{\sqrt{9}}\right)$
C. $\frac{1}{2}\left(\frac{1}{\sqrt{1}}+\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}+\frac{2}{\sqrt{7}}+\frac{1}{\sqrt{9}}\right)$
D. $\frac{2}{3}\left(\frac{1}{\sqrt{1}}+\frac{4}{\sqrt{3}}+\frac{2}{\sqrt{5}}+\frac{4}{\sqrt{7}}+\frac{1}{\sqrt{9}}\right)$
E. $1\left(\frac{1}{\sqrt{1}}+\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{5}}+\frac{2}{\sqrt{7}}+\frac{1}{\sqrt{9}}\right)$

Free Response Questions: Show all steps clearly to receive full credit.
11. (a) (5 points) Compute $\int x^{3} \ln (x) d x$.

Solution: Integration by parts: Let $u=\ln x$ so $d u=\frac{1}{x} d x$, and $d v=x^{3} d x$ so $v=\frac{1}{4} x^{4}$. Then

$$
\int x^{3} \ln (x) d x=\frac{1}{4} x^{4} \ln x-\int \frac{1}{4} x^{3} d x=\frac{1}{4} x^{4} \ln x-\frac{1}{16} x^{4}+C .
$$

(b) (5 points) Compute $\int \sin ^{2}(5 x) d x$.

Solution:

$$
\int \sin ^{2}(5 x) d x=\int \frac{1}{2}-\frac{1}{2} \cos (10 x) d x=\frac{1}{2} x-\frac{1}{20} \sin (10 x)+C .
$$

12. (10 points) Compute $\int \frac{4}{\sqrt{49-x^{2}}} d x$ using trigonometric substitution. Show all steps clearly.

Solution: Use the trig substitution $x=7 \sin \theta$ so $d x=7 \cos \theta d \theta$.
The integral becomes

$$
\int \frac{4}{\sqrt{49-49 \sin ^{2} \theta}} 7 \cos \theta d \theta=\int 4 \cdot \frac{7 \cos \theta}{7 \cos \theta} d \theta=\int 4 d \theta=4 \theta+C
$$

Now since $\sin \theta=x / 7$ then the integral is $4 \arcsin \left(\frac{x}{7}\right)+C$.
13. (10 points) Compute $\int_{1}^{\infty} \frac{1}{(3 x+1)^{2}} d x$. Justify your answer by showing your work.

Solution: The integral is

$$
\begin{aligned}
\lim _{B \rightarrow \infty} \int_{1}^{B}(3 x+1)^{-2} d x & =\left.\lim _{B \rightarrow \infty}\left(-\frac{1}{3}(3 x+1)^{-1}\right)\right|_{1} ^{B} \\
& =\lim _{B \rightarrow \infty}\left(-\frac{1}{3} \cdot \frac{1}{3 B+1}+\frac{1}{3} \cdot \frac{1}{3+1}\right) \\
& =0+\frac{1}{3}\left(\frac{1}{4}\right) \\
& =\frac{1}{12}
\end{aligned}
$$

14. (10 points) Using the method of partial fractions, compute

$$
\int \frac{3 x^{2}-11 x+3}{x^{2}(x+3)} d x
$$

Solution:

The partial fraction is:

$$
\frac{3 x^{2}-11 x+3}{x^{2}(x+3)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+3}
$$

This results in:

$$
3 x^{2}-11 x+3=A x(x+3)+B(x+3)+C x^{2}
$$

Solving, we get $A=-4, B=1, C=7$. The integral becomes

$$
\int \frac{-4}{x}+\frac{1}{x^{2}}+\frac{7}{x+3} d x
$$

leading to

$$
-4 \ln |x|-\frac{1}{x}+7 \ln |x+3|+C
$$

15. (a) (5 points) Apply the midpoint rule to estimate the integral $\int_{-4}^{8} f(x) d x$ using three intervals (ie find M_{3}), where the graph of $f(x)$ is given below.

Solution: $\Delta x=\frac{8-(-4)}{3}=4$, so we will use three intervals $[-4,0],[0,4],[4,8]$ each of size 4 . Their midpoints are $-2,2,6$. Then

$$
M_{3}=4(f(-2)+f(2)+f(6))=4(3+9+3)=60 .
$$

(b) (5 points) Apply the trapezoid rule to estimate the integral $\int_{-4}^{8} f(x) d x$ using four intervals (ie find T_{4}), where the graph of $f(x)$ is given below.

Solution: $\Delta x=\frac{8-(-4)}{4}=3$, so the x_{i} 's are $-4,-1,2,5,8$. Then

$$
T_{4}=\frac{3}{2}(f(-4)+2 f(-1)+2 f(2)+2 f(5)+f(8))=\frac{3}{2}(5+2 \cdot 4+2 \cdot 9+2 \cdot 6+2)=67.5
$$

