MA 114 — Calculus II
 Spring 2014

 Exam 4
 Feb. 11, 2014

Name:

Section:

Last 4 digits of student ID #: _____

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.
- Multiple Choice Questions: Record your answers on the right of this cover page by marking the box corresponding to the correct answer.
- Free Response Questions: Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.

Multiple Choice Answers

Question					
1	А	В	С	D	Е
2	А	В	С	D	Е
3	А	В	С	D	Е
4	А	В	С	D	Е

Exam Scores

Question	Score	Total
MC		20
5		13
6		13
7		18
8		18
9		18
Total		100

Unsupported answers for the free response questions may not receive credit!

Record the correct answer to the following problems on the front page of this exam.

- 1. Compute the average value of the function $f(x) = 3x^2 + 2$ over the interval [1,4].
 - A. 14
 - B. 17
 - C. 20
 - D. 23
 - E. 26

2. Which trigonometric substitution is needed to evaluate the integral

$$\int \frac{1}{\sqrt{x^2 + 10}} \, dx \, ?$$

A.
$$x = 10\sin(\theta)$$
.

- B. $x = \sqrt{10} \sec(\theta)$.
- C. $x = \sqrt{10} \tan(\theta)$.
- D. $x = 10 \sec(\theta)$.
- E. $x = \sqrt{10}\sin(\theta)$.

Record the correct answer to the following problems on the front page of this exam.

3. Consider the region in the first quadrant enclosed by the graphs of

$$f(x) = 2 - x^2$$
, $g(x) = x$, and $x = 0$.

When rotating this region about the y-axis, which of the following integrals gives the volume of the resulting solid of revolution?

A.
$$\pi \int_{-\sqrt{2}}^{\sqrt{2}} (2-x^2)^2 dx$$

B. $2\pi \int_{0}^{\sqrt{2}} (2-x^2)^2 dx$
C. $\pi \int_{0}^{1} ((2-x^2)^2 - x^2) dx$
D. $2\pi \int_{0}^{1} (2-x^2 - x) dx$
E. $2\pi \int_{0}^{1} x(2-x^2 - x) dx$

4. Let $f(x) = \sqrt{4x+6}$ and g(x) = 3. The region enclosed by the graphs of f and g over the interval [1,3] is rotated about the x-axis. Which of the following integrals expresses the volume of the resulting solid of revolution?

A.
$$2\pi \int_{1}^{3} x(\sqrt{4x+6}-3)dx.$$

B. $\pi \int_{1}^{3} (\sqrt{4x+6}-3)^{2}dx.$
C. $\pi \int_{1}^{3} (4x-3)dx.$
D. $\pi \int_{1}^{3} x((4x+6)^{2}-9)dx.$
E. $2\pi \int_{1}^{3} x(4x-3)dx.$

5. Evaluate the integral

 $\int x^3 \ln(2x) dx.$

6. Compute the integral

 $\int \sin^2 x \cos^5 x dx.$

- 7. Consider the solid whose base is the region enclosed by the graphs of y = 9 and $y = x^2$ and whose vertical cross sections perpendicular to the y-axis at the value y are rectangles of height 5y.
 - (a) Give a sketch of the base region.

(b) Compute the area of the cross section at y.

(c) Compute the volume of the solid.

8. Evaluate the integral $\int \frac{dx}{x^2\sqrt{x^2-16}}$.

- 9. A cone with a circular base of radius 2 m and height 6 m is to be built with material having a density of 180 kg per m^3 .
 - (a) Compute the area of the cone's cross section at height y above the base.

(b) Present the integral that expresses the work against gravity to build the cone. For gravity use 9.8 m/s^2 .

(c) Calculate the work. Give the unit with your answer.