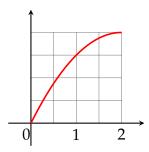
Math 114 Exam 1

Name:	Section:
i varic:	_ beenon.

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. The wise student will show work for the multiple choice problems as well.


Multiple Choice Questions

1 (A	B	<u>C</u>	D	E	6	A	B	C	D	E

Multiple						Total
Choice	11	12	13	14	15	Score
50	10	10	10	10	10	100

Multiple Choice Questions

- 1. (5 points) Which trig substitution should be used to find $\int \frac{1}{4+x^2} dx$?
 - A. $x = 4 \tan \theta$
 - B. $x = 2 \tan \theta$
 - C. $x = 2 \sin \theta$
 - D. $x = 4 \sin \theta$
 - E. $x = \sin(2\theta)$
- 2. (5 points) The left endpoint method (L_n) , the right endpoint method (R_n) , and the Trapezoid method (T_n) are used to estimate $I = \int_0^2 f(x) dx$ where the graph of f(x) is as shown. Which of the following is correct for a given n?

- A. L_n overestimates I, T_n underestimates I, and R_n underestimates I
- B. L_n and R_n underestimate I, and T_n overestimates I
- C. L_n and T_n underestimate I, but R_n overestimates I
- D. L_n and T_n overestimate I, and R_n underestimates I
- E. L_n , R_n and T_n all overestimate I
- 3. (5 points) For what values of p does the improper integral

$$\int_1^\infty \frac{1}{x^{2p}} \, dx$$

converge?

- A. $p \le 1$
- B. $p \ge 1/2$
- C. $p \le 1/2$
- D. p > 1/2
- E. p < 1

4. (5 points) The partial fraction decomposition of $\frac{1}{x^2 + x^4}$ is

A.
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} + \frac{D}{x-1}$$

B.
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} + \frac{D}{(x+1)^2}$$

C.
$$\frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 1}$$

D.
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{(x+1)^2}$$

E.
$$\frac{Ax+B}{x^2} + \frac{C}{(x-1)^2}$$

5. (5 points) If $x = \sin(u)$ and $-\pi/2 \le u \le \pi/2$, find $\cot(u)$.

A.
$$\sqrt{1-x^2}$$

B.
$$\sqrt{1-x^2}/x$$

C.
$$1/\sqrt{1-x^2}$$

D.
$$x/\sqrt{1-x^2}$$

E.
$$1/x$$

6. (5 points) If we substitute $x = 4 \sin u$ with $-\pi/2 \le \theta \le \pi/2$ in the integral

$$\int x\sqrt{16-x^2}\,dx,$$

we obtain

A.
$$\int 64 \sin^2(u) \cos(u) \, du$$

B.
$$\int 16\sin^2(u)\cos(u)\,du$$

C.
$$\int 16\sin(u)\cos^2(u)\,du$$

D.
$$\int 64\sin(u)\cos^2(u)\,du$$

$$E. \int 64 \sin^2(u) \cos^2(u) du$$

7. (5 points) How large should we take n in the Trapezoid rule in order to approximate $\int_1^2 (1/x) dx$ to within 0.0001? Recall that the error E_T made in applying the Trapezoid rule T_n to compute $\int_a^b f(x) dx$ obeys the bound

$$E_T \le \frac{K(b-a)^3}{12n^2}$$

where *K* is an upper bound for f''(x) on [a, b].

- A. n = 41 or larger
- B. n = 40 or less
- C. n = 20
- D. n = 10
- E. n = 5
- 8. (5 points) Evaluate $\int \frac{5x+1}{(2x+1)(x-1)} dx$
 - A. $\ln |2x + 1| + \ln |x 1| + C$
 - B. $\frac{1}{2} \ln |2x + 1| + 2 \ln |x 1| + C$
 - C. $\frac{1}{5} \ln |2x + 1| + \ln |x 1| + C$
 - D. $2 \ln |2x + 1| + \frac{1}{2} \ln |x 1| + C$
 - E. $\frac{1}{2} \ln |2x + 1| + \frac{1}{2} \ln |x 1| + C$
- 9. Evaluate $\int x \cos x \, dx$
 - A. $x^2 \cos x + x \sin x + C$
 - B. $x \cos x + \sin x + C$
 - C. $x \sin x + \cos x + C$
 - D. $x^2 \sin x + C$
 - E. $x^2 \cos x + C$
- 10. Consider the integral

$$\int_{e}^{\infty} \frac{1}{x(\ln x)^2} \, dx.$$

Which of the following statements is correct?

- A. The integral is divergent
- B. The integral is convergent and its value is 2
- C. The integral is convergent and its value is 1
- D. The integral is convergent and its value is 1/e
- E. None of these

Free Response Questions

11. (10 points) Compute
$$\int \frac{10}{(x-1)(x^2+9)} dx$$

12. (10 points) The following table shows the speedometer reading from a car in 1 minute intervals. Use Simpson's rule to estimate the distance travelled by the car over the 10 minute period. Be careful to make a consistent choice of units and be sure to show your work.

t (min)	0	1	2	3	4	5	6	7	8	9	10
<i>v</i> (mi/h)	40	42	45	49	52	54	56	57	57	55	56

13. (10 points) Compute the definite integral $\int_0^{\pi/2} \sin^2 x \cos^3 x \, dx$.

14. (a) (5 points) Use integration by parts to compute the indefinite integral

$$\int x^2 e^{-x} \, dx$$

(b) (5 points) Determine whether the improper integral

$$\int_0^\infty x^2 e^{-x} \, dx.$$

converges and if so find its value. Recall that $\lim_{x\to\infty} x^2 e^{-x} = \lim_{x\to\infty} x e^{-x} = 0$ by L'Hospital's rule.

15. (10 points) Using trig substitution, evaluate the indefinite integral

$$\int \frac{x^2}{\sqrt{9-x^2}} \, dx.$$