Exam 1

Name: _

Section: _____

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. You are allowed to use notes on a single piece of 8.5"X11" paper, front and back, including formulas and theorems. You are required to turn this page in with your exam. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS). Absolutely no communication device use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. It will also help you check your answers to show work on multiple choice problems.

Multiple Choice Questions (\mathbf{B}) (\mathbf{C}) (\mathbf{D}) (\mathbf{E}) (\mathbf{B}) \mathbf{C} (\mathbf{D}) 1 6 (\mathbf{E}) А $\left(\mathbf{B}\right)$ (D) (\mathbf{B}) С $\left[\mathbf{D} \right]$ (\mathbf{E}) C $\mathbf{2}$ 7 E $\left(\mathbf{B}\right)$ (\mathbf{B}) (\mathbf{D}) С (\mathbf{D}) (\mathbf{E}) (\mathbf{C}) 3 8 (\mathbf{E}) (\mathbf{B}) (\mathbf{C}) (D) (\mathbf{B}) 4 (\mathbf{C}) (\mathbf{D}) (\mathbf{E}) 9 А (\mathbf{E}) \mathbf{B} (D) \mathbf{C} (\mathbf{E}) B` C D (\mathbf{E}) $\mathbf{5}$ 10

Multiple Choice						Total
Choice	11	12	13	14	15	Score
50	10	10	10	10	10	100

Trig Identities

- $\sin^2(x) + \cos^2(x) = 1$ and $\tan^2(x) + 1 = \sec^2(x)$
- $\sin^2(x) = \frac{1}{2}(1 \cos(2x))$ and $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$

Multiple Choice Questions

1. (5 points) Find
$$\int x \sin(x) dx$$
.
A. $\sin(x) + \cos(x) + C$.
B. $\frac{x^2}{2}(\sin(x) - \cos(x)) + C$.
C. $\sin(x) - x \cos(x) + C$.
D. $\cos(x^2) + \sin(x) + C$.
E. $2x \sin(x) + C$.

2. (5 points) If f(0) = 1, f(1) = 1, f'(0) = 2 and f'(1) = 7, and f''(x) is continuous, what is $\int_0^1 (x-3)f''(x) \, dx$? A. 1 B. 15 C. -6 D. 7 E. -8

Exam 1

- 3. (5 points) Find $\int (1 + \cos(x))^2 dx$. **A.** $\frac{3}{2}x + 2\sin(x) + \frac{1}{4}\sin(2x) + C$. B. $1 + \sin^2(x) + C$. C. $\cos(2x) + \frac{3}{4}x + C$. D. $\cos(2x) + 2\cos(x) + x + C$. E. $\cos(x)^2\sin(2x) + C$.
- 4. (5 points) Which of the following is equal to the integral

$$\int \frac{x^3}{\sqrt{4-x^2}} \, dx$$

after making the substitution $x = 2\sin(\theta)$?

A.
$$4 \int \sec(\theta) \ d\theta$$
.
B. $4 \int \cos^2(\theta) \ d\theta$.
C. $8 \int \sin(\theta) \cos(\theta) \ d\theta$.
D. $8 \int \sin^3(\theta) \ d\theta$.
E. $2 \int \sin^2(\theta) \sec(\theta) \ d\theta$.

5. (5 points) Which of the following is equal to the expression $\tan(\arcsin(\frac{x}{4}))$?

A.
$$\frac{x}{4}$$
.
B. $\frac{x}{\sqrt{16 - x^2}}$.
C. $\frac{1}{4}\sqrt{4 + x^2}$.
D. $\frac{x}{\sqrt{4 + x^2}}$.
E. $\frac{16}{\sqrt{x^2 - 16}}$.

6. (5 points) Find

$$\int_{1}^{\infty} \frac{1}{x^{\frac{3}{2}}} dx$$

A. ∞ B. $\frac{3}{2}$ C. 2 D. $\frac{2}{3}$ E. $-\infty$

A. B =

B. B =

C. B =

D. B =

E. B =

7. (5 points) What is the form of the partial fraction decomposition of

$$\frac{x-2}{(x+1)(x^2+x+1)(x-1)}?$$
A. $\frac{A}{x+1} + \frac{B}{x-1} + \frac{Cx+D}{x^2+x+1}$
B. $\frac{A}{x+1} + \frac{Bx+C}{x^2+x+1} + \frac{Dx+E}{x-1}$
C. $\frac{A}{x+1} + \frac{Bx+C}{x^2+x+1}$
D. $\frac{A}{x+1} + \frac{Bx+C}{x-1}$
E. $\frac{A}{x+1} + \frac{B}{x^2+x+1}$

8. (5 points) Find the coefficient B in the partial fraction decomposition

$$\frac{x}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$

$$\frac{1}{3}$$

$$\frac{2}{3}$$

$$\frac{1}{2}$$

$$-\frac{1}{3}$$

- 9. (5 points) Let f(x) be a function that satisfies $|f''(x)| \leq 3$ on the interval [5,7]. Choose the smallest n so that we can be sure that $E_M = |M_n - \int_5^7 f(x) dx| \leq .000001$, where M_n is the midpoint approximation with n intervals.
 - A. n = 15,000B. n = 1,000C. n = 500D. n = 200E. n = 100

10. (5 points) Find the Simpson's rule estimate of $\int_{1}^{7} x^{2} dx$ for n = 6.

A. $S_6 = 19$ B. $S_6 = 342$ C. $S_6 = 115$ D. $S_6 = 114$ E. $S_6 = 216$ Free Response Questions

11. (10 points) Compute $\int e^x \cos(x) dx$.

Solution: Integration by parts: Let $u = e^x$ so $du = e^x dx$, and $dv = \cos(x)dx$ so $v = \sin(x)$. Then, $\int e^x \cos(x) dx = e^x \sin(x) - \int e^x \sin(x) dx$. Now do a 2nd integration by parts with $u = e^x$ and $dv = \sin(x)$ to get $\int e^x \cos(x) dx = e^x \sin(x) - (-e^x \cos(x) - \int e^x (-\cos(x) dx) = e^x (\sin(x) + \cos(x)) - \int e^x \cos(x) dx$. This gives $\int e^x \cos(x) dx = \frac{1}{2} e^x (\sin(x) + \cos(x)) + C$. 12. (10 points) Compute $\int \sqrt{9+x^2} \, dx$. You must simplify your answer.

Solution: Use the trig substitution $x = 3 \tan \theta$ so $\sqrt{9 + x^2} = 3\sqrt{1 + \tan^2 \theta} = 3 \sec \theta$ and $dx = 3 \sec^2 \theta d\theta$. This results in the integral $9 \int \sec^3 \theta d\theta$.

Now we do integration by parts with $u = \sec \theta$ and $dv = \sec^2 \theta d\theta$, giving $du = \sec \theta \tan \theta d\theta$ and $v = \tan \theta$. This gives $9 \int \sec^3 \theta d\theta = 9 \sec \theta \tan \theta - 9 \int \tan^2 \theta \sec \theta d\theta$.

Now we use the trig identity $\tan^2 \theta = \sec^2 \theta - 1$ to obtain $9 \int \sec^3 \theta d\theta = 9 \sec \theta \tan \theta - 9 \int (\sec^2 \theta - 1) \sec \theta d\theta = 9 \sec \theta \tan \theta + 9 \int \sec \theta d\theta - 9 \int \sec^2 \theta d\theta = 9 \sec \theta \tan \theta + 9 \ln(|\sec \theta + \tan \theta|) - 9 \int \sec^3 \theta d\theta$. As a consequence we get $9 \int \sec^3 \theta d\theta = \frac{9}{2}(\sec \theta \tan \theta + \ln(|\sec \theta + \tan \theta|)) + C$.

Now we substitute $\theta = \arctan(\frac{x}{3})$ to get

$$\int \sqrt{9 + x^2} dx =$$

 $\frac{9}{2}\left(\sec\left(\arctan\left(\frac{x}{3}\right)\right)\tan\left(\arctan\left(\frac{x}{3}\right)\right) + \ln\left(|\sec\left(\arctan\left(\frac{x}{3}\right)\right) + \tan\left(\arctan\left(\frac{x}{3}\right)\right)|\right)\right) + C = \frac{1}{2}\left(\sec\left(\operatorname{arctan}\left(\frac{x}{3}\right)\right) + \operatorname{arctan}\left(\frac{x}{3}\right)\right) + \operatorname{arctan}\left(\frac{x}{3}\right) + \operatorname{arctan}\left(\frac{x}{3}\right)$

 $\frac{9}{2}\left(\sec\left(\arctan\left(\frac{x}{3}\right)\right)\frac{x}{3}\right) + \ln\left(|\sec\left(\arctan\left(\frac{x}{3}\right)\right) + \frac{x}{3}\right)|\right)\right) + C$

We compute $\sec(\arctan(\frac{x}{3})) = \frac{1}{3}\sqrt{9+x^2}$ to get:

 $\int \sqrt{9+x^2} dx = \frac{9}{2} \left(\frac{x}{9} \sqrt{9+x^2} \right) + \ln(|\frac{1}{3} \sqrt{9+x^2} + \frac{x}{3})|) + C$

13. (10 points) Compute $\int_{1}^{\infty} x e^{x^2+1} dx$. Justify your answer by showing your work.

Solution: The improper integral is defined by $\lim_{t\to\infty} \int_1^t x e^{x^2+1} dx$.

Letting $u = x^2 + 1$ we get du = 2xdx, so the indefinite integral is $\int xe^{x^2+1}dx = \frac{1}{2}\int e^u du = \frac{1}{2}e^{x^2+1} + C$.

The definite integral is $\int_1^t x e^{x^2+1} dx = [\frac{1}{2}e^{x^2+1}]_1^t = \frac{1}{2}[e^{t^2+1}-e].$

Taking the limit, we obtain $\lim_{t\to\infty} \frac{1}{2}[e^{t^2+1}-e] = \lim_{t\to\infty} \frac{1}{2}e^{t^2+1}-\frac{e}{2} = \infty.$

14. (10 points) Using the method of partial fractions, compute

$$\int \frac{1}{(x-3)(x^2-2x+1)} \, dx.$$

Solution:

The partial fraction is:

$$\frac{1}{(x-3)(x^2-2x+1)} = \frac{1}{(x-3)(x-1)^2} = \frac{A}{x-3} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$

This results in:

$$1 = A(x-1)^{2} + B(x-3)(x-1) + C(x-3)$$

Solving, we get $A = \frac{1}{4}, B = -\frac{1}{4}, C = -\frac{1}{2}$. The integral becomes

$$\frac{1}{4} \int \frac{dx}{x-3} - \frac{1}{4} \int \frac{dx}{x-1} - \frac{1}{2} \int \frac{dx}{(x-1)^2}$$

leading to

$$\frac{1}{4}\ln(x-3) - \frac{1}{4}\ln(x-1) + \frac{1}{2}(\frac{1}{x-1}) + C$$

15. (a) (5 points) Use the midpoint rule to estimate the integral

$$\int_{1}^{7} \frac{1}{x^3} dx$$

Use six intervals (ie find M_6).

Solution: Midpoint rule for $f(x) = \frac{1}{x^3}$ and n = 6, with b - a = 7 - 1 = 6, so $\Delta = 1$.

Endpoints are 1, 2, 3, 4, 5, 6, 7. The midpoints are $\frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2}, \frac{11}{2}, \frac{13}{2}$.

$$M_6 = \frac{2^3}{3^3} + \frac{2^3}{5^3} + \frac{2^3}{7^3} + \frac{2^3}{9^3} + \frac{2^3}{11^3} + \frac{2^3}{13^3} = .404246$$

(b) (5 points) Use the trapezoid rule to estimate the integral

$$\int_{1}^{7} \frac{1}{x^3} dx$$

Use six intervals (ie find T_6).

Solution: From above, the endpoints are 1, 2, 3, 4, 5, 6, 7, so $T_6 = \frac{1}{2} \left[\frac{1}{1^3} + 2\frac{1}{2^3} + 2\frac{1}{3^3} + 2\frac{1}{4^3} + 2\frac{1}{5^3} + 2\frac{1}{6^3} + \frac{1}{7^3} \right] = .691749$