$\begin{aligned} & \text { IA } 114 \\ & \text { RACT } \\ & \text { ECON } \end{aligned}$	Calculus II C MIDTERM	$\begin{gathered} \text { Spring } 2004 \\ 03 / 09 / 2004 \end{gathered}$	Name:	
SEC.	INSTRUCTORS	T.A.'S	LECTURES	RECITATIONS
001	A. Corso	D. Watson	MWF 8:00-8:50, CP 222	TR 8:00-9:15, CB 347
002	A. Corso	D. Watson	MWF 8:00-8:50, CP 222	TR 12:30-1:45, CP 155
003	A. Corso	S. Petrovic	MWF 8:00-8:50, CP 222	TR 3:30-4:45, CB 347

Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes may be used. You may use a calculator. You may not use a calculator which has symbolic manipulation capabilities. When answering these questions, please be sure to:

- check answers when possible,
- clearly indicate your answer and the reasoning used to arrive at that answer (unsupported answers may receive NO credit).

QUESTION	SCORE	TOTAL
$\mathbf{1 .}$		54
$\mathbf{2 .}$		10
$\mathbf{3 .}$		15
$\mathbf{4 .}$		15
$\mathbf{5 .}$		10
Bonus.		5
TOTAL	out of 100 pts	109

1. Evaluate the following integrals. Each problem is worth 7 points.
(a) $\int \sin ^{3} x \cos ^{3} x d x=$
(b) $\int \frac{x}{x^{2}+4 x+5} d x=$
(c) $\int \sqrt{x} \ln (5 x) d x=$ \qquad -
(d) $\int \frac{1+\sin x}{\cos ^{2} x} d x=$

1.(cont.d)

(e) $(7 \mathrm{pts}) \int \frac{1}{\left(x^{2}+1\right)^{\frac{3}{2}}} d x=$ \qquad .
$(f)(9 \mathrm{pts})$ For each of the following functions write out the form of the partial fractions decomposition. DO NOT solve for the coefficients.

$$
\begin{aligned}
& \frac{x}{(x+1)(x+4)}= \\
& \frac{x^{2}+1}{x^{4}+x^{3}+2 x^{2}}= \\
& \frac{x}{x^{4}+2 x^{2}+1}=
\end{aligned}
$$.

(g) Find the partial fraction decomposition of the function $f(x)(5 \mathrm{pts})$ and then evaluate the corresponding integral (5 pts):
$f(x)=\frac{1}{x^{4}+x^{2}}=$ \qquad ,
$\int \frac{1}{x^{4}+x^{2}} d x=$ \qquad .

The trapezoid rule T_{n} and Simpson's rule S_{n} for approximating the integral $\int_{a}^{b} f(x) d x$ are:

$$
\begin{gathered}
T_{n}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots \cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right), \\
S_{n}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots \cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right),
\end{gathered}
$$

where $\Delta x=b-a / n, x_{0}=a, x_{i}=x_{0}+i \Delta x$ for $i=1, \ldots, n$, and n is even in Simpson's rule.
The error in the trapezoid rule, E_{T}, and in Simpson's rule, E_{S}, satisfy

$$
\left|E_{T}\right| \leq \frac{K_{2}(b-a)^{3}}{12 n^{2}} \quad \text { and } \quad\left|E_{S}\right| \leq \frac{K_{4}(b-a)^{5}}{180 n^{4}}
$$

where K_{j} is a number so that the j th derivative satisfies $\left|f^{(j)}(x)\right| \leq K_{j}$ for all x with $a \leq x \leq b$.
2. Consider the integral $\int_{0}^{2} e^{-x^{2}} d x$.
(a) Use the trapezoid rule with $n=5$ to estimate the above integral. Round your answer to 3 decimal places.
(b) Use Simpson's rule with $n=4$ to estimate the above integral. Round your answer to 3 decimal places.
3. (a) (5 pts) State the Comparison Theorem for integrals.
(b) (5 pts) Use the Comparison Theorem to determine whether the following integral converge or diverge

$$
\int_{0}^{\infty} \frac{\sin ^{2}(x)}{1+x^{2}} d x
$$

(c) (5 pts) Use the Comparison Theorem to determine whether the following integral converge or diverge

$$
\int_{1}^{\infty} \frac{2+e^{-x}}{1+x} d x
$$

4. A model for a growth function for a limited population is given by the Gompertz function which is a solution of the differential equation

$$
\frac{d y}{d t}=c \ln \left(\frac{M}{y}\right) y
$$

where c is a constant and M is the maximum size of the population.
(a) (12 pts) Solve the differential equation.

$$
y(t)=
$$

(b) (3 pts) Compute $\lim _{t \rightarrow \infty} y(t)=$
5. Find the length of the curve

$$
y=\int_{0}^{x} \sqrt{3 t^{4}-1} d t
$$

from $x=-2$ to $x=-1$.

Bonus. Consider the integral $\int_{1}^{3} e^{-3 x} d x$.
(a) Find n so that the error in approximating the above integral by the trapezoid rule T_{n} is less than 10^{-4}.
(b) Find n so that the error in approximating the above integral by Simpson's rule S_{n} is less than 10^{-4}.

