MA 114 - Calculus II PRACTICE SECOND MIDTERM		Spring 2004 03/09/2004	Name:	Sec.:	
	SEC.	INSTRUCTORS	T.A.'S	LECTURES	RECITATIONS
	001	A. Corso	D. Watson	MWF 8:00-8:50, CP 222	TR 8:00-9:15, CB 347
	002	A. Corso	D. Watson	MWF 8:00-8:50, CP 222	TR 12:30-1:45, CP 155
	003	A. Corso	S. Petrovic	MWF 8:00-8:50, CP 222	TR 3:30-4:45, CB 347

Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes may be used. You may use a calculator. You may not use a calculator which has symbolic manipulation capabilities. When answering these questions, please be sure to:

- check answers when possible,
- clearly indicate your answer and the reasoning used to arrive at that answer (*unsupported answers may receive NO credit*).

QUESTION	SCORE	TOTAL
1.		54
2.		10
3.		15
4.		15
5.		10
Bonus.		5
TOTAL	out of 100 pts	109

1. Evaluate the following integrals. Each problem is worth 7 points.

$$(a) \quad \int \sin^3 x \cos^3 x \, dx = _$$

$$(b) \quad \int \frac{x}{x^2 + 4x + 5} \, dx = \underline{\qquad}.$$

(c)
$$\int \sqrt{x} \ln(5x) dx =$$
 _____.

$$(d) \quad \int \frac{1+\sin x}{\cos^2 x} \, dx = \underline{\qquad}.$$

1.(cont.d)

(e) (7 pts)
$$\int \frac{1}{(x^2+1)^{\frac{3}{2}}} dx =$$
_____.

(f) (9 pts) For each of the following functions write out the form of the partial fractions decomposition. DO NOT solve for the coefficients.

$$\frac{x}{(x+1)(x+4)} = \underline{\qquad}.$$
$$\frac{x^2+1}{x^4+x^3+2x^2} = \underline{\qquad}.$$
$$\frac{x}{x^4+2x^2+1} = \underline{\qquad}.$$

(g) Find the partial fraction decomposition of the function f(x) (5 pts) and then evaluate the corresponding integral (5 pts):

$$f(x) = \frac{1}{x^4 + x^2} =$$
_____,

The **trapezoid rule** T_n and **Simpson's rule** S_n for approximating the integral $\int_a^b f(x) dx$ are:

$$T_n = \frac{\Delta x}{2} \left(f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n) \right),$$

$$S_n = \frac{\Delta x}{3} \left(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right),$$

where $\Delta x = b - a/n$, $x_0 = a$, $x_i = x_0 + i\Delta x$ for i = 1, ..., n, and *n* is even in Simpson's rule. The **error** in the trapezoid rule, E_T , and in Simpson's rule, E_S , satisfy

$$|E_T| \le \frac{K_2(b-a)^3}{12n^2}$$
 and $|E_S| \le \frac{K_4(b-a)^5}{180n^4}$

where K_j is a number so that the *j*th derivative satisfies $|f^{(j)}(x)| \le K_j$ for all *x* with $a \le x \le b$.

- **2.** Consider the integral $\int_0^2 e^{-x^2} dx$.
- (a) Use the trapezoid rule with n = 5 to estimate the above integral. Round your answer to 3 decimal places.

(b) Use Simpson's rule with n = 4 to estimate the above integral. Round your answer to 3 decimal places.

3. (a) (5 pts) State the Comparison Theorem for integrals.

(b) (5 pts) Use the Comparison Theorem to determine whether the following integral converge or diverge

$$\int_0^\infty \frac{\sin^2(x)}{1+x^2} dx.$$

(c) (5 pts) Use the Comparison Theorem to determine whether the following integral converge or diverge

$$\int_1^\infty \frac{2+e^{-x}}{1+x} dx.$$

4. A model for a growth function for a limited population is given by the *Gompertz function* which is a solution of the differential equation

$$\frac{dy}{dt} = c \ln\left(\frac{M}{y}\right) y$$

where c is a constant and M is the maximum size of the population.

(a) (12 pts) Solve the differential equation.

(b) (3 pts) Compute $\lim_{t \to \infty} y(t) =$ _____.

5. Find the length of the curve

$$y = \int_0^x \sqrt{3t^4 - 1} \, dt$$

from x = -2 to x = -1.

pts: /10

Bonus. Consider the integral $\int_{1}^{3} e^{-3x} dx$.

- (a) Find *n* so that the error in approximating the above integral by the trapezoid rule T_n is less than 10^{-4} .
- (b) Find *n* so that the error in approximating the above integral by Simpson's rule S_n is less than 10^{-4} .

