Exam 2

22 October 2013

KEY

Multiple Choice Questions

1. D
2. B
3. B
4. D
5. A
6. E
7. Which of the following functions gives the arc length of curve $f(x)=\ln (\cos (x))$ over the interval from $x=0$ to $x=t$, provided $0 \leq t<\frac{\pi}{2}$?
A. $s(t)=\int_{0}^{t} \cos (x) d x$
B. $s(t)=\int_{0}^{t} \sqrt{1+\frac{\sin (x)}{\cos ^{2}(x)}} d x$
C. $s(t)=\int_{0}^{t} \sqrt{1+\frac{1}{\cos ^{2}(x)}} d x$
D. $s(t)=\int_{0}^{t} \sec (x) d x$
E. $s(t)=1.22619$

Solution: $f^{\prime}(x)=\frac{d}{d x} \ln (\cos (x))=-\tan (x)$ so

$$
s(t)=\int_{0}^{t} \sqrt{1+(-\tan (x))^{2}} d x=\int_{0}^{t} \sqrt{1+\tan ^{2}(x)} d x=\int_{0}^{t} \sqrt{\sec ^{2}(x)} d x=\int_{0}^{t} \sec (x) d x
$$

2. Which of the following differential equations is not separable?
A. $x\left(y^{2}+1\right)+(x-1) y^{\prime}=0$
B. $y^{\prime}+3 y^{2}=7 x$
C. $x y^{\prime}+\sqrt{y}=0$
D. $y^{\prime}=\cos (y)$
E. $y^{\prime}+3 y=1$

Solution: Isolating y^{\prime} we have $y^{\prime}=7 x-3 y^{2}$ and this cannot be written as a product $f(x) g(y)$.
3. Assume that $f(1)=1, f^{\prime}(1)=3, f^{\prime \prime}(1)=2$ and $f^{\prime \prime \prime}(1)=4$. Which of the following is the Taylor polynomial $T_{3}(x)$ centered at $a=1$ for the function $f(x)$?
A. $T_{3}(x)=1+3(x-1)+(x-1)^{2}+\frac{2}{3}(x-1)^{3}$
B. $T_{3}(x)=1+3(x-1)+(x-1)^{2}+\frac{4}{3}(x-1)^{3}$
C. $T_{3}(x)=3(x-1)+(x-1)^{2}+\frac{4}{3}(x-1)^{3}$
D. $T_{3}(x)=3(x-1)+2(x-1)^{2}+4(x-1)^{3}$
E. $T_{3}(x)=1+3(x-1)+2(x-1)^{2}+4(x-1)^{3}$

Solution: The nth term in the Taylor polynomial is given by $\frac{f^{(n)}(x)}{n!}(x-a)^{n}$. Therefore,

$$
\begin{aligned}
T_{3}(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3} \\
& =f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{3!}(x-1)^{3} \\
& =1+3(x-1)+\frac{2}{2!}(x-1)^{2}+\frac{4}{3!}(x-1)^{3} \\
T_{3}(x) & =1+3(x-1)+(x-1)^{2}+\frac{2}{3}(x-1)^{3}
\end{aligned}
$$

so the answer is A .
4. Select the expected form of the partial fraction decomposition of the rational function

$$
f(x)=\frac{x^{2}+3 x-4}{\left(x^{2}-4\right)\left(x^{2}+4\right)\left(x^{2}+2 x\right)} .
$$

A. $\frac{A}{x}+\frac{B}{x-2}+\frac{C}{x+2}+\frac{D x+E}{(x+2)^{2}}+\frac{F x+G}{x^{2}+4}$
B. $\frac{A}{x}+\frac{B}{x-2}+\frac{C}{x+2}+\frac{D}{(x+2)^{2}}+\frac{E x+F}{x^{2}+4}$
C. $\frac{A x+B}{x^{2}+2 x}+\frac{C x+D}{x^{2}-4}+\frac{E x+F}{x^{2}+4}$
D. $\frac{A}{x}+\frac{B}{x-2}+\frac{C}{x+2}+\frac{D}{x+2}+\frac{E x+F}{x^{2}+4}$
E. $\frac{A}{x}+\frac{B}{x-2}+\frac{C}{x+2}+\frac{D}{(x+2)^{2}}+\frac{E}{x^{2}+4}$

Solution: Note that $\left(x^{2}-4\right)\left(x^{2}+4\right)\left(x^{2}+2 x\right)=(x-2)(x+2)\left(x^{2}+4\right)(x)(x+2)=$ $x(x-2)(x+2)^{2}\left(x^{2}+4\right)$. The form that the partial fractional decomposition will take is

$$
\begin{aligned}
\frac{x^{2}+3 x-4}{\left(x^{2}-4\right)\left(x^{2}+4\right)\left(x^{2}+2 x\right)} & =\frac{x^{2}+3 x-4}{x(x-2)(x+2)^{2}\left(x^{2}+4\right)} \\
& =\frac{A}{x}+\frac{B}{x-2}+\frac{C}{x+2}+\frac{D}{(x+2)^{2}}+\frac{E x+F}{x^{2}+4}
\end{aligned}
$$

5. Which of the following statements is false?
A. $\int_{1}^{\infty} \frac{300}{x^{2}} d x$ converges.
B. $\int_{0}^{1} x^{-2 / 5} d x$ converges.
C. $\int_{4}^{\infty} \frac{1}{x-\sqrt{3}} d x$ diverges.
D. $\int_{3}^{6} \frac{1}{(x-3)^{2}} d x$ converges
E. $\int_{2}^{\infty} \frac{e^{x}}{x-1} d x$ diverges

Solution: A. converges by the p-series test since $2>1$. Likewise C diverges by the p-series test. E diverges since e^{x} grows faster than any power of x. B converges since this integral is equal to $\int_{1}^{\infty} x^{-5 / 2} d x+1$ and $5 / 2>1$. D diverges.
6. Which of the following is a possible solution to the differential equation $y^{\prime}=2(y-5)$?
A. $y=2+7 e^{5 t}$
B. $y=5+3 e^{-2 t}$
C. $y=2-3 e^{5 t}$
D. $y=5-2 e^{3 t}$
E. $y=5+7 e^{2 t}$

Solution: There are multiple ways to solve this. A student could plug each of the proposed solutions into the differential equation and see which one holds. A student could also remember the general form for the solutions of these types of equations. Either way, E is the correct choice.

Free Response Questions

You must show all of your work in these problems to receive credit. Answers without corroborating work will receive no credit.
7. Let $f(x)=\frac{18}{x^{2}-4 x-5}$.
(a) Find $\int \frac{18}{x^{2}-4 x-5} d x$.

Solution: Use partial fractions to decompose the integrand into two simpler pieces.

$$
\begin{aligned}
\frac{18}{x^{2}-4 x-5} & =\frac{18}{(x-5)(x+1)}=\frac{A}{x-5}+\frac{B}{x+1} \\
18 & =A(x+1)+B(x-5)
\end{aligned}
$$

Substituting $x=5$ in the above formula, we find that $18=6 A$ or $A=3$. Likewise substituting $x=-1$ gives us that $18=-6 B$ or $B=-3$. Thus,

$$
\begin{aligned}
\int \frac{18}{x^{2}-4 x-5} d x & =\int\left(\frac{3}{x-5}-\frac{3}{x+1}\right) d x=3(\ln |x-5|-\ln |x+1|)+C \\
& =3 \ln \left|\frac{x-5}{x+1}\right|+C
\end{aligned}
$$

(b) Find $\int_{6}^{\infty} \frac{18}{x^{2}-4 x-5} d x$.

Solution:

$$
\begin{aligned}
\int_{6}^{\infty} \frac{18}{x^{2}-4 x-5} d x & =\lim _{M \rightarrow \infty} \int_{6}^{M} \frac{18}{x^{2}-4 x-5} d x \\
& =\left.\lim _{M \rightarrow \infty} 3 \ln \left|\frac{x-5}{x+1}\right|\right|_{6} ^{M} \\
& =\lim _{M \rightarrow \infty}\left(3 \ln \left|\frac{M-5}{M+1}\right|-3 \ln \left|\frac{1}{7}\right|\right) \\
& =0-3 \ln \frac{1}{7}=3 \ln 7=\ln \left(7^{3}\right)=\ln (343) \approx 5.8377
\end{aligned}
$$

8. (a) Calculate the arc length of the curve $y=\frac{2}{3} x^{3 / 2}$ over the interval $[0,8]$.

Solution: $f^{\prime}(x)=\frac{2}{3}\left(\frac{3}{2} x^{1 / 2}\right)=x^{1 / 2}$, so $\sqrt{1+\left[f^{\prime}(x)\right]^{2}}=\sqrt{1+x}$.

$$
L=\int_{0}^{8} \sqrt{1+x} d x=\left.\frac{2}{3}(1+x)^{3 / 2}\right|_{0} ^{8}=\frac{52}{3} \approx 17.333
$$

(b) Now, take the curve $y=\frac{1}{3} x^{3}$ and rotate it about the x-axis. Calculate the surface area of the solid of rotation defined by this curve, $y=\frac{1}{3} x^{3}$ over the interval $[0,3]$.

Solution: $f^{\prime}(x)=\frac{1}{3}\left(3 x^{2}\right)=x^{2}$, so $\sqrt{1+\left[f^{\prime}(x)\right]^{2}}=\sqrt{1+\left(x^{2}\right)^{2}}$.

$$
S=\int_{0}^{3} 2 \pi \frac{1}{3} x^{3} \sqrt{1+\left(x^{2}\right)^{2}} d x=\left.\frac{\pi}{9}\left(x^{4}+1\right)^{3 / 2}\right|_{0} ^{3}=\frac{\pi}{9}(82 \sqrt{82}-1) \approx 258.847
$$

9. In the following we use Simpson's rule for integral approximation, S_{N} on N subintervals.
(a) Compute S_{4} for the integral $\int_{0}^{1} e^{-2 x} d x$.

Solution: $\quad \frac{1}{12}\left(e^{-2(0)}+4 e^{-2(.25)}+2 e^{-2(.5)}+4 e^{-2(.75)}+e^{-2(1)}\right) \approx .43248$
(b) The error bound for using S_{n} for $x \in[a, b]$ is given by

$$
\operatorname{Error}\left(S_{N}\right) \leq \frac{K_{4}(b-a)^{5}}{180 N^{4}}
$$

where K_{4} is the maximum value of $\left|f^{(4)}(x)\right|$ for all $x \in[a, b]$. Find K_{4} and calculate the error bound for S_{4}.

Solution: $\left|f^{(4)}(x)\right|=16 e^{-2 x}$ which is decreasing so, K_{4} should be made 16 .

$$
\text { Bound }=\frac{16(1-0)^{5}}{180(4)^{4}}=\frac{1}{2880} \approx .00035
$$

10. Determine the y-coordinate of the center of mass for the region bounded by $y=x^{3}$ and $y=\sqrt{x}$.

Solution: $y_{C M}=\frac{M_{x}}{M}$, so

$$
\begin{aligned}
y_{C M} & =\frac{M_{x}}{M}=\frac{\rho \int_{0}^{1} y\left(\sqrt[3]{y}-y^{2}\right) d y}{\rho \int_{0}^{1}\left(\sqrt[3]{y}-y^{2}\right) d y}=\frac{\int_{0}^{1}\left(y^{4 / 3}-y^{3}\right) d y}{\int_{0}^{1}\left(y^{1 / 3}-y^{2}\right) d y} \\
& =\frac{\left(\frac{3}{7} y^{7 / 3}-\left.\frac{1}{4} y^{4}\right|_{0} ^{1}\right.}{\left(\frac{3}{4} y^{4 / 3}-\left.\frac{1}{3} y^{3}\right|_{0} ^{1}\right.} \frac{\frac{5}{28}}{\frac{5}{12}}=\frac{3}{7}
\end{aligned}
$$

11. Use separation of variables to find the general solution to $5 y^{\prime}+6 x^{2} y^{2}=0$.

Solution:

$$
\begin{aligned}
5 y^{\prime}+6 x^{2} y^{2} & =0 \\
5 y^{\prime} & =-6 x^{2} y^{2} \\
\frac{y^{\prime}}{y^{2}} & =-\frac{6}{5} x^{2} \\
-\frac{1}{y} & =-\frac{2}{5} x^{3}+C \\
y(x) & =\frac{1}{\frac{2}{5} x^{3}+C}
\end{aligned}
$$

12. Let $T_{n}(x)$ be the nth Taylor polynomial for $f(x)=e^{-x}$ centered at $a=0$.
(a) Find $T_{4}(x)$.

Solution: We need $f(0), f^{\prime}(0), f^{\prime \prime}(0), f^{\prime \prime \prime}(0)$, and $f^{(4)}(0)$.

$$
\begin{aligned}
f(x) & =e^{-x} \Rightarrow f(0)=e^{0}=1 \\
f^{\prime}(x) & =-e^{-x} \Rightarrow f^{\prime}(0)=-e^{0}=-1 \\
f^{\prime \prime}(x) & =e^{-x} \Rightarrow f^{\prime \prime}(0)=e^{0}=1 \\
f^{\prime \prime \prime}(x) & =-e^{-x} \Rightarrow f^{\prime \prime \prime \prime}(0)=-e^{0}=-1 \\
f^{(4)}(x) & =e^{-x} \Rightarrow f^{(4)}(0)=e^{0}=1 \\
T_{4}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4} \\
& =1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}
\end{aligned}
$$

(b) The error bound for using $T_{n}(x)$ centered at $x=a$ to approximate $f(x)$ is given by $\left|f(x)-T_{n}(x)\right| \leq K \frac{|x-a|^{n+1}}{(n+1)!}$, where $K=\max \left\{\left|f^{(n+1)}(u)\right|: u\right.$ is between a and $\left.x\right\}$.

Use this formula to find the error bound of $\left|f(1)-T_{4}(1)\right|$.
Solution: The fifth derivative of $f(x)$ is $f^{(5)}(x)=-e^{-x}$. On the interval $[0,1]$ the largest absolute value of this derivative will be e so let $K=1$. Then

$$
\left|f(1)-T_{4}(1)\right| \leq K \frac{|x-1|^{5}}{5!} \leq 1 \frac{|0-1|^{5}}{5!}=\frac{1}{5!}
$$

13. Newton's Law of Cooling predicts that the temperature $y(t)$ of a cooling object satisfies the differential equation

$$
y^{\prime}=-k\left(y-T_{0}\right)
$$

where $k>0$ is a constant and T_{0} is the temperature of the environment around the object.
A bowl of soup is served at $70^{\circ} \mathrm{C}$. Assuming a cooling constant of $k=1 \mathrm{~min}^{-1}$ and an ambient temperature of $T_{0}=20^{\circ} \mathrm{C}$
(a) Use the information given above to set up the precise differential equation needed to solve this problem.

Solution: $y^{\prime}=-1(y-20)$
(b) What is the initial condition?

Solution: $y_{0}=70$.
(c) Find a formula for $y(t)$

Solution:

$$
\begin{aligned}
y^{\prime} & =-1(y-20)=20-y \\
\frac{y^{\prime}}{y-20} & =-1 \\
\ln |y-20| & =-t+C, \\
\text { When } t=0, y=70, \ln |70-20| & =C \\
C & =\ln 50 \\
\ln |y-20| & =\ln (50)-t \\
y(t)-20 & =e^{\ln (50)-t}=50 e^{-t} \\
y(t) & =20+50 e^{-t}
\end{aligned}
$$

(d) Use this to predict how long it will take for the soup to cool to $50^{\circ} \mathrm{C}$.

Solution: Find t so that $y(t)=50$.

$$
\begin{aligned}
y(t) & =20+50 e^{-t} \\
50 & =20+50 e^{-t} \\
e^{-t} & =\frac{3}{5} \\
t & =-\ln \frac{3}{5} \\
& =0.51 \mathrm{~min}
\end{aligned}
$$

