Exam 2

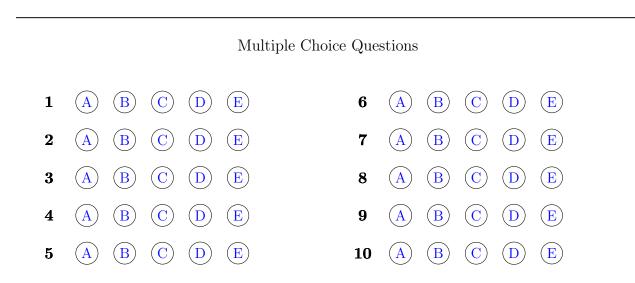
Name: ____

Section: _____

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. It will also help you check your answers to show work on multiple choice problems.



Multiple						Total
Choice	11	12	13	14	15	Score
50	10	10	10	10	10	100

Multiple Choice Questions

1. (5 points) What are the first five terms of the sequence defined by

$$a_0 = 2$$
 $a_{n+1} = \frac{a_n}{4} + \frac{3}{4}?$

A. $\{2, \frac{5}{4}, \frac{17}{16}, \frac{65}{64}, \frac{257}{256}\}$ B. $\{2, \frac{5}{4}, \frac{17}{16}, \frac{65}{64}, \frac{129}{128}\}$ C. $\{2, \frac{5}{4}, \frac{17}{16}, \frac{257}{256}, \frac{1025}{1024}\}$ D. $\{2, \frac{5}{4}, \frac{129}{128}, \frac{257}{256}, \frac{1025}{1024}\}$ E. $\{2, 1, 1, 1, 1\}$

2. (5 points) Does the sequence

$$a_n = \frac{3^n}{2+8^n}$$

converge or diverge?

- A. Converges by the squeeze theorem since $0 \leq a_n \leq b_n = \left(\frac{3}{8}\right)^n$.
- B. Converges by the squeeze theorem since $0 \leq a_n \leq b_n = \frac{1}{8^n}$.
- C. Diverges by the comparison theorem since $0 \leq a_n \leq b_n = \left(\frac{3}{8}\right)^n$.
- D. Diverges by the comparison theorem since $b_n = \frac{3^n}{1} \leq a_n$.
- E. Diverges by the comparison theorem since $b_n = \left(\frac{8}{3}\right)^n \leq a_n$.

E. Diverges because it is a geometric series and $|r| \ge 1$.

4. (5 points) Which of the following series converge?

A.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3n}$$

B.
$$\sum_{n=1}^{\infty} \frac{5}{\sqrt{n}}$$

C.
$$\sum_{n=1}^{\infty} (-1)^n$$

D.
$$\sum_{n=1}^{\infty} \left(\frac{1000}{999}\right)^n$$

E. None of the above series converge.

- 5. (5 points) Find the sum of the series $\sum_{n=1}^{\infty} \left(\frac{2}{n(n+1)} + \frac{3}{2^n} \right)$
 - A. 5
 - B. 0
 - C. $\frac{2}{3}$
 - D. $\frac{3}{2}$
 - E. This series is divergent.

6. (5 points) What would you compare $\sum_{n=1}^{\infty} \frac{\sqrt{n^3+1}}{n^3+n^2+1}$ to for a conclusive comparison test?

A.
$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

B.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

C.
$$\sum_{n=1}^{\infty} \ln n$$

D.
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

E. The comparison test can't be used to understand convergence for this series.

- 7. (5 points) If $\sum_{k=1}^{\infty} a_k$ is a series that has partial sums $s_N = \sum_{k=1}^{N} a_k = \frac{3N^2 + 4}{5N^2 + N + 6}$, then what can be said about the series?
 - A. The series converges to $\frac{3}{5}$.
 - B. The series converges to 0.
 - C. The series converges to 1.
 - D. The series diverges since $\lim_{N \to \infty} \frac{3N^2 + 4}{5N^2 + N + 6} \neq 0.$
 - E. The series diverges by the comparison test.

8. (5 points) When using the ratio test to decide whether the following series converges or diverges, which of the following limits would you need to compute?

$$\sum_{n=1}^{\infty} \frac{3^n}{(2n)!}$$

A.
$$\lim_{n \to \infty} \frac{3}{(2n+2)(2n+1)}$$

B.
$$\lim_{n \to \infty} \frac{3}{(2n+1)}$$

C.
$$\lim_{n \to \infty} \sqrt[n]{\frac{6}{(2n+1)}}$$

D.
$$\lim_{n \to \infty} \frac{6}{(2n+1)}$$

E.
$$\lim_{n \to \infty} \frac{3}{(2n+1)!}$$

9. (5 points) What is the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-5)^n}{n}$?

A. [4, 6)B. (-5, 5)C. [-1, 1)D. $(-\infty, \infty)$ E. $\{5\}$

10. (5 points) Find the first 4 terms of the Taylor series for $f(x) = \sin(-2x)$ centered at 0.

A. $0 + \frac{2}{1!}x + 0 - \frac{8}{3!}x^3$ B. $0 - \frac{2}{1!}x - 0 + \frac{8}{3!}x^3$ C. $0 + \frac{2}{1!}x + 0 + \frac{2}{3!}x^3$ D. $0 - \frac{1}{1!}x + 0 + \frac{1}{2!}x^4$ E. $0 + \frac{2}{2!}x^2 + 0 + \frac{8}{4!}x^4$

Exam 2

Free Response Questions

11. (a) (4 points) If
$$\frac{1}{(n+5)(n+6)} = \frac{A}{n+5} + \frac{B}{n+6}$$
 find A and B.

(b) (4 points) Use part (a) to find a simpler expression for

$$\sum_{n=1}^{k} \frac{1}{(n+5)(n+6)}$$

(c) (2 points) What is the sum of the series

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)(n+6)}?$$

12. Are the series below absolutely convergent, conditionally convergent, or divergent?
(a) (5 points)

$$\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$$

(b) (5 points)

$$\sum_{n=1}^{\infty} \frac{4+3n}{(1+n^2)^2}$$

13. Are the series below absolutely convergent, conditionally convergent, or divergent?

(a) (5 points)
$$\sum_{n=1}^{\infty} \left(\frac{5-n}{3+2n}\right)^n$$

(b) (5 points)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n^3}{n^4+2}$$

14. (a) (5 points) What is the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n}{9^n} x^n$? What is the interval of convergence?

(b) (5 points) What is the radius of convergence of the power series $\sum_{n=1}^{\infty} n! (x-5)^n$? What is the interval of convergence? 15. (a) (3 points) Find the first 6 terms of the Taylor series for the function $f(x) = \ln(x+1)$ centered at 0.

(b) (3 points) Find the Taylor series centered at 0 for the function $f(x) = \ln(x+1)$.

(c) (4 points) Use your answer from part (b) to calculate the sum of $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{1}{n}$