MA 114 - Calculus II Exam 2

Spring 2015
March 10, 2015

Name: \qquad

Section: \qquad

Last 4 digits of student ID \#: \qquad

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.
- Multiple Choice Questions:

Record your answers on the right of this cover page by marking the box corresponding to the correct answer.

- Free Response Questions:

Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.

Multiple Choice Answers

Question					
1	A	B	C	D	E
2	A	B	C	D	E
3	A	B	C	D	E
4	A	B	C	D	E
5	A	B	C	D	E
6	A	B	C	D	E
7	A	B	C	D	E

Exam Scores

Question	Score	Total
MC		28
8		14
9		15
10		15
11		13
12		15
Total		100

[^0]Record the correct answer to the following problems on the front page of this exam.

1. If the first four terms of the Taylor series for e^{x} are $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$ what are the first four terms for the Taylor series for $x^{2} e^{x^{3}}$?
A. $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$.
B. $x^{2}+x^{5}+\frac{x^{8}}{2}+\frac{x^{11}}{6}$.
C. $x^{2}+x^{3}+\frac{x^{4}}{2}+\frac{x^{5}}{6}$.
D. $1+x^{3}+\frac{x^{6}}{2}+\frac{x^{9}}{6}$.
E. $x^{3}+x^{4}+\frac{x^{5}}{2}+\frac{x^{6}}{6}$.
2. Use the first four terms of the Taylor series for e^{x} (see Problem 1) to find an approximate value of $\int_{0}^{1} e^{2 x} d x$.
A. $\frac{19}{3}$.
B. $\frac{16}{5}$.
C. $\frac{19}{6}$.
D. 3 .
E. $\frac{7}{3}$.
3. Which of the following integrals describes the volume of a right circular cone with base radius 2 cm and height 8 cm ?
A. $\int_{0}^{8} \frac{\pi}{16}(8-y) y d y$.
B. $\int_{0}^{2} \frac{\pi}{16}(8-y) y d y$.
C. $\int_{0}^{8} \frac{\pi}{16}(8-y)^{2} d y$.
D. $\int_{0}^{8} \frac{\pi}{16} y^{2} d y$.
E. $\quad \int_{0}^{8} \frac{\pi}{16}(2-y)^{2} d y$.
4. Which of the following integrals describes the volume of the solid given by revolving the region between $y=2$ and $y=6-x^{2}$ around the x-axis?
A. $\int_{-2}^{2} \pi\left(4-x^{2}\right)^{2} d x$.
B. $\int_{-1}^{1} \pi\left(4-x^{2}\right)^{2} d x$.
C. $\int_{-2}^{2} \pi\left(\left(6-x^{2}\right)^{2}-4\right) d x$.
D. $\int_{-1}^{1} \pi\left(\left(6-x^{2}\right)^{2}-4\right) d x$.
E. $\int_{-1}^{1} 2 \pi x\left(6-x^{2}-2\right) d x$.
5. Which of the following integrals describes the volume of the solid given by revolving the region under the graph of $f(x)=x^{3}$ and above the interval $[1,2]$ around the line $x=-2$?
A. $\int_{1}^{2} 2 \pi(x+2) x^{3} d x$.
B. $\int_{1}^{2} 2 \pi x\left(x^{3}\right) d x$.
C. $\int_{1}^{2} \pi x^{6} d x$.
D. $\int_{1}^{8} 2 \pi x\left(x^{3}\right) d x$.
E. $\int_{1}^{8} 2 \pi(x+2) x^{3} d x$.
6. How much work is done to remove the water in a swimming pool if the pool is

$$
20 \mathrm{~m} \text { long, } 15 \mathrm{~m} \text { wide and } 3 \mathrm{~m} \text { deep? }
$$

Water is removed from the top of the pool and the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. The gravitational constant $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
A. 100 J .
B. $4,410,000 J$.
C. $900,000 J$.
D. $8,820,000 J$.
E. $13,230,000 \mathrm{~J}$.

Record the correct answer to the following problems on the front page of this exam.
7. Compute $\int \sin ^{2} x \cos ^{3} x d x$.
A. $\frac{1}{5} \sin ^{5} x+C$.
B. $\frac{1}{3} \sin ^{3} x+C$.
C. $\frac{1}{3} \cos ^{3} x+\frac{1}{5} \cos ^{5} x+C$.
D. $\frac{1}{3} \sin ^{3} x+\frac{1}{5} \sin ^{5} x+C$.
E. $\frac{1}{3} \sin ^{3} x-\frac{1}{5} \sin ^{5} x+C$.
8. Find the first four terms of the Taylor series for $f(x)=(1-x)^{-1 / 2}$ centered at 0 . (Hint: you are looking for a polynomial of degree 3.)
9. Find the volume of the solid whose base is the circle $x^{2}+y^{2}=2^{2}$ and the cross sections perpendicular to the x-axis are squares.
10. Consider the region between the circle $x^{2}+y^{2}=4$ and the line $y=1$ and above the x-axis.
(a) Graph this region.
(b) Use the disk/washer method to find the volume of the solid given by revolving this region around the x-axis.
11. Use the shell method to find the volume of the solid given by revolving the region between the graphs of $y=-x^{2}+6 x-8$ and $y=0$ around the y-axis.
12. (a) Compute $\int \tan ^{3} x \sec ^{2} x d x$
(b) What is the volume of the solid given by revolving the region under $f(x)=\sin ^{3 / 2} x$ and above $[0, \pi]$ around the x-axis?

[^0]: Unsupported answers for the free response questions may not receive credit!

