MA 114 — Calculus II
 Spring 2015

 Exam 2
 March 10, 2015

Name: _____

Section: _____

Last 4 digits of student ID #: _____

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.
- Multiple Choice Questions: Record your answers on the right of this cover page by marking the box corresponding to the correct answer.
- Free Response Questions: Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.

Multiple Choice Answers

Question					
1	A	В	С	D	Е
2	А	В	С	D	Е
3	A	В	С	D	Е
4	А	В	С	D	Е
5	А	В	С	D	Е
6	А	В	С	D	Е
7	A	В	С	D	Е

Exam Scores

Question	Score	Total
MC		28
8		14
9		15
10		15
11		13
12		15
Total		100

Unsupported answers for the free response questions may not receive credit!

1. If the first four terms of the Taylor series for e^x are $1 + x + \frac{x^2}{2} + \frac{x^3}{6}$ what are the first four terms for the Taylor series for $x^2 e^{x^3}$?

A.
$$1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$
.
B. $x^2 + x^5 + \frac{x^8}{2} + \frac{x^{11}}{6}$.
C. $x^2 + x^3 + \frac{x^4}{2} + \frac{x^5}{6}$.
D. $1 + x^3 + \frac{x^6}{2} + \frac{x^9}{6}$.
E. $x^3 + x^4 + \frac{x^5}{2} + \frac{x^6}{6}$.

2. Use the first four terms of the Taylor series for e^x (see Problem 1) to find an approximate value of $\int_0^1 e^{2x} dx$.

A.
$$\frac{19}{3}$$
.
B. $\frac{16}{5}$.
C. $\frac{19}{6}$.
D. 3.
E. $\frac{7}{3}$.

3. Which of the following integrals describes the volume of a right circular cone with base radius 2*cm* and height 8*cm*?

A.
$$\int_{0}^{8} \frac{\pi}{16} (8-y) y dy.$$

B.
$$\int_{0}^{2} \frac{\pi}{16} (8-y) y dy.$$

C.
$$\int_{0}^{8} \frac{\pi}{16} (8-y)^{2} dy.$$

D.
$$\int_{0}^{8} \frac{\pi}{16} y^{2} dy.$$

E.
$$\int_{0}^{8} \frac{\pi}{16} (2-y)^{2} dy.$$

4. Which of the following integrals describes the volume of the solid given by revolving the region between y = 2 and $y = 6 - x^2$ around the x-axis?

A.
$$\int_{-2}^{2} \pi (4 - x^{2})^{2} dx.$$

B.
$$\int_{-1}^{1} \pi (4 - x^{2})^{2} dx.$$

C.
$$\int_{-2}^{2} \pi ((6 - x^{2})^{2} - 4) dx.$$

D.
$$\int_{-1}^{1} \pi ((6 - x^{2})^{2} - 4) dx.$$

E.
$$\int_{-1}^{1} 2\pi x (6 - x^{2} - 2) dx.$$

5. Which of the following integrals describes the volume of the solid given by revolving the region under the graph of $f(x) = x^3$ and above the interval [1,2] around the line x = -2?

A.
$$\int_{1}^{2} 2\pi (x+2)x^{3} dx.$$

B. $\int_{1}^{2} 2\pi x (x^{3}) dx.$
C. $\int_{1}^{2} \pi x^{6} dx.$
D. $\int_{1}^{8} 2\pi x (x^{3}) dx.$
E. $\int_{1}^{8} 2\pi (x+2)x^{3} dx.$

6. How much work is done to remove the water in a swimming pool if the pool is

20m long, 15m wide and 3m deep?

Water is removed from the top of the pool and the density of water is $1000kg/m^3$. The gravitational constant $g = 9.8m/s^2$.

- A. 100*J*.
- B. 4,410,000*J*.
- C. 900,000*J*.
- D. 8,820,000*J*.
- E. 13, 230, 000*J*.

- 7. Compute $\int \sin^2 x \cos^3 x dx$.
 - A. $\frac{1}{5}\sin^5 x + C.$ B. $\frac{1}{3}\sin^3 x + C.$ C. $\frac{1}{3}\cos^3 x + \frac{1}{5}\cos^5 x + C.$ D. $\frac{1}{3}\sin^3 x + \frac{1}{5}\sin^5 x + C.$

E.
$$\frac{1}{3}\sin^3 x - \frac{1}{5}\sin^5 x + C.$$

8. Find the first four terms of the Taylor series for $f(x) = (1-x)^{-1/2}$ centered at 0. (Hint: you are looking for a polynomial of degree 3.)

9. Find the volume of the solid whose base is the circle $x^2 + y^2 = 2^2$ and the cross sections perpendicular to the *x*-axis are squares.

- 10. Consider the region between the circle $x^2 + y^2 = 4$ and the line y = 1 and above the *x*-axis.
 - (a) Graph this region.

(b) Use the disk/washer method to find the volume of the solid given by revolving this region around the *x*-axis.

11. Use the shell method to find the volume of the solid given by revolving the region between the graphs of $y = -x^2 + 6x - 8$ and y = 0 around the y-axis.

12. (a) Compute $\int \tan^3 x \sec^2 x dx$

(b) What is the volume of the solid given by revolving the region under $f(x) = \sin^{3/2} x$ and above $[0, \pi]$ around the x-axis?