Russell Brown

MA114S21
Assignment Exam02 due 04/03/2021 at 09:00pm EDT

Problem 1.

5. (5 points) local/rmb-problems/integral-test-num.pg

Give the whole number N for which we have $\int_{N+1}^{\infty} \frac{1}{x^{2}} d x \leq \sum_{k=6}^{\infty} \frac{1}{k^{2}} \leq \int_{N}^{\infty} \frac{1}{x^{2}} d x$.
$N=$ \qquad .

Evaluate one of the integrals above to find A so that $\sum_{k=6}^{\infty} \frac{1}{k^{2}} \leq A$
$A=$ \qquad
The answers must be correctly rounded to four decimal places or more accurate.
Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

For a decreasing function, we have $\int_{j}^{j+1} f(x) d x \leq f(j) \leq \int_{j-1}^{j} f(x) d x$. Summing these inequalities for $j=6$ to some large integer M and taking a limit as M approaches ∞ gives

$$
\int_{6}^{\infty} f(x) d x \leq \sum_{j=6}^{\infty} f(j) \leq \int_{6-1}^{\infty} f(x) d x
$$

Thus we can see that we want $N=5$.
Evaluating the improper integral gives

$$
\int_{5}^{\infty} \frac{1}{x^{2}} d x=\frac{1}{5} .
$$

Correct Answers:

- 5
- 0.2

Problem 2.

7. (5 points) local/rmb-problems/power-series-num.pg

Consider the function

$$
F(x)=\int_{0}^{x} \frac{1}{1+t^{3}} d t
$$

The first three (non-zero) terms of the Mclaurin series for F are $A x+B x^{4}+C x^{7}$. Give the values of A, B, and C.
$A=$ \qquad $B=$ \qquad $C=$

Your answers must be correctly rounded to four decimal places, or more accurate. Exact answers are preferred.

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

We use the geometric series to write $\frac{1}{1+x^{3}}=\sum_{j=0}^{\infty}(-1)^{j} x^{3 j}$. We integrate this expression term-by-term to find

$$
F(x)=\sum_{j=0}^{\infty} \frac{(-1)^{j} x^{3 j+1}}{3 j+1}
$$

Writing out the first three terms of the series gives

$$
x-\frac{x^{4}}{4}+\frac{x^{7}}{7} .
$$

Correct Answers:

- 1
- -0.25
- 0.142857

Problem 3.

1. (5 points) local/rmb-problems/geom-series2-num.pg

Find the sum of the geometric series $\sum_{k=3}^{\infty} 11 \cdot 3^{-k}=$ \qquad
Your answer should be correctly rounded to four decimal places, or more accurate.
Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

The sum of a geometric series is $\frac{a}{1-r}$ where a is the first term and r is the ratio.
For the series in this problem we write a few terms

$$
\sum_{k=3}^{\infty} 11 \cdot 3^{-k}=11 \cdot 3^{-3}+11 \cdot 3^{-4}+11 \cdot 3^{-5}+\ldots
$$

The first term $a=11 \cdot 3^{-3}$ and the ratio is $r=1 / 3$. This gives the sum of the series is

$$
\sum_{k=3}^{\infty} 11 \cdot 3^{-k}=\frac{11 \cdot 3^{-3}}{1-1 / 3}
$$

As a decimal, the answer is 0.611111 .
Correct Answers:

- 0.611111

Problem 4.

3. (5 points) local/rmb-problems/alt-series-div-mc.pg

Select the one correct statement for the series $\sum_{k=1}^{\infty} \frac{(-1)^{k} k}{4 k+7}$?

- A. The series is absolutely convergent.
- B. The series is conditionally convergent.
- C. The series is absolutely convergent, but not convergent.
- D. The series is divergent.
- E. None of the above

Solution: (Instructor solution preview: show the student solution after due date.)
SOLUTION
Since $\lim _{k \rightarrow \infty} \frac{(-1)^{k} k}{4 k+7}=\frac{1}{4}$ does not exist, the series is divergent.
Correct Answers:

- D

Problem 5.

2. (5 points) local/rmb-problems/telescope-num.pg
3. (5 points) local/rmb-problems/telescope-num.pg

Find the value of the finite sum $\sum_{k=5}^{25}\left(\frac{7}{k}-\frac{7}{k+1}\right)=$ \qquad
Your answer should be correctly rounded to four decimal places, or more accurate.

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

This is a telescoping series. If we write out a few terms, we see that second fraction in a term cancels with the first fraction in the next term. After canceling we are left with the first fraction from the first term and second fraction from the last term.

$$
\sum_{k=5}^{25}\left(\frac{7}{k}-\frac{7}{k+1}\right)=\frac{7}{5}-\frac{7}{5+1}+\frac{7}{5+1}-\frac{7}{5+2}+\cdots+\frac{7}{25-1}-\frac{7}{25} \frac{7}{25}-\frac{7}{25+1}
$$

After canceling we are left with the first fraction from the first term and second fraction from the last term which gives the value

$$
\frac{7}{5}-\frac{7}{25+1}
$$

We recommend you enter the exact answer, but you may also round to obtain the value for the answer, 1.13077.

Correct Answers:

- 1.13077

Problem 6.

4. (5 points) local/rmb-problems/limit-comp-mc.pg

Consider the series $\sum_{j=1}^{\infty} \frac{1}{3^{j}+17 j+2}$ and select the correct statement.

- A. Using the comparison test to compare with the series $\sum_{j=1}^{\infty} \frac{1}{3^{j}}$ establishes of the divergence of the series.
- B. Using the comparison test to compare with the series $\sum_{j=1}^{\infty} \frac{1}{3^{j}}$ establishes convergence of the series.
- C. The series converges conditionally, but we cannot use a comparison test to establish conditional convergence.
- D. Using the comparison test to compare with the series $\sum_{j=1}^{\infty} \frac{1}{17 j}$ establishes divergence of the series.
- E. Using the comparison test to compare with the series $\sum_{j=1}^{\infty} \frac{1}{17 j}$ establishes convergence of the series.
Correct Answers:
- B

Problem 7.

6. (5 points) local/rmb-problems/ratio-test-num.pg

Consider the power series $\sum_{k=1}^{\infty} \frac{5^{k} x^{k}}{k!}$ with terms $a_{k}=\frac{5^{k} x^{k}}{k!}$.
Find the limit of the ratio $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=$ \qquad
Give the radius of convergence of the series $\sum_{k=1}^{\infty} \frac{5^{k} x^{k}}{k!}$.

- A. ∞
- B. $1 / 5$
- C. 0
- D. 1
- E. 5

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

We simplify the ratio $\frac{a_{k+1}}{a_{k}}=\frac{5^{k+1} x^{k+1} k!}{5^{k} x^{k}(k+1)!}=\frac{5 x}{k+1}$. The limit of this ratio is $\lim _{k \rightarrow \infty} \frac{5 x}{k+1}=0$.
For the series to converge, we must choose x so that the limit above is less than 1 . But since this limit is 0 , it is always less than 1 . Thus the radius of convergence is ∞.

Correct Answers:

- 0
- A

Problem 8.

8. (5 points) local/rmb-problems / cond-abs-conv-mc.pg

Determine if each series converges absolutely, converges conditionally, or diverges.

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}
$$

- A. The series diverges.
- B. The series converges conditionally.
- C. The series converges absolutely.

$$
\sum_{k=1}^{\infty}(-1)^{k} 2^{k}
$$

- A. The series converges absolutely.
- B. The series converges conditionally.
- C. The series diverges.

Correct Answers:

- C
- C

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America
[MA 114, Exam 2, Free Response Part, March 23, 2021]

This is the free response part of Exam 2. There are 3 questions, each worth 20 points. Please write your solutions in full, clearly indicating each step leading to the final answer. Omitting details will result in a lower grade.

20 Question 1. Determine the radius and the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n+3)(5 n+11) x^{n}}{7^{n}}
$$

Be sure to test the endpoints, and clearly label your final answers.
Solution: Writing

$$
a_{n}=\frac{(-1)^{n}(2 n+3)(5 n+11) x^{n}}{7^{n}}
$$

we have

$$
\text { (4) } \left.\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(2 n+5)(5 n+16)|x|}{7(2 n+3)(5 n+11)}=\frac{|x|}{7} .\right\}
$$

It follows that the radius of convergence is $R=7$ and the series converges in $(-7,7)$ and diverges outside of $[-7,7]$. For both $x=7$ and $x=-7$, we have

$$
\left|a_{n}\right|=(2 n+3)(5 n+11)
$$

and thus $\left\{a_{n}\right\}$ does not converge to zero. Therefore the series diverges at $x= \pm 7$ and the interval of convergence is $(-7,7)$.

20 Question 2. For each of the following series, use the limit comparison test to determine if the series converges.
(a) $\quad \sum_{k=1}^{\infty} \frac{1}{3^{k}}\left(\frac{4 k^{2}+5}{2 k^{2}+1}\right)$

Solution: Writing

$$
a_{k}=\frac{1}{3^{k}}\left(\frac{4 k^{2}+5}{2 k^{2}+1}\right), \quad b_{k}=\frac{1}{3^{k}},-2
$$

we have

$$
\begin{equation*}
\left.\lim _{n \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{n \rightarrow \infty} \frac{4 k^{2}+5}{2 k^{2}+1}=2 \neq 0\right\} \tag{2}
\end{equation*}
$$

Since

$$
\sum_{k=1}^{\infty} b_{k}=\sum_{k=1}^{\infty} \frac{1}{3^{k}} \quad 2
$$

is a geometric series with common ratio $1 / 3<1$, it converges. Thus $\sum_{k=1}^{\infty} a_{k}$ converges by the limit comparison test.
(b) $\quad \sum_{k=1}^{\infty}\left(\frac{k^{2}+2 k-1}{3 k^{3}+5 k}\right)$

Solution: Writing

$$
a_{k}=\frac{k^{2}+2 k-1}{3 k^{3}+5 k}, \quad b_{k}=\frac{1}{k},-2
$$

we have

$$
\left.\lim _{n \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{n \rightarrow \infty} \frac{k^{2}+2 k-1}{3 k^{2}+5}=\frac{1}{3} \neq 0 .\right\} \text { (2) }
$$

$\underbrace{\text { Since the harmonic series } \sum_{k=1}^{\infty} \frac{1}{k} \text { diverges, the series } \sum_{k=1}^{\infty} a_{k} \text { diverges by the limit comparison }}_{\text {test. }}$
(c) $\quad \sum_{k=1}^{\infty}\left(\frac{2 k^{3}+3 k^{2}}{5 k^{7}+7 k^{5}+12}\right)$

Solution: Writing
we have

$$
a_{k}=\frac{2 k^{3}+3 k^{2}}{5 k^{7}+7 k^{5}+12}, \quad b_{k}=\frac{1}{k^{4}}, 2
$$

$$
\left.\lim _{n \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{n \rightarrow \infty} \frac{2 k^{7}+3 k^{6}}{5 k^{7}+7 k^{5}+12}=\frac{2}{5} \neq 0 .\right\}
$$

$\underbrace{\text { Since the } p \text {-series } \sum_{k=1}^{\infty} \frac{1}{k^{4}} \text { converges, the series } \sum_{k=1}^{\infty} a_{k} \text { converges by the limit comparison test. }}$
(2)

20 Question 3. Let $f(x)=\ln (3-2 x)$.
(a) Find the derivative $f^{\prime}(x)$ of $f(x)$, and then find a power series centered at 0 for $f^{\prime}(x)$. Give the radius of convergence for the power series.

Solution: We have, using a geometric series with common ratio $2 x / 3$,

$$
\begin{aligned}
f^{\prime}(x) & \left.=-\frac{2}{3-2 x}\right\} \\
& \left.=-\frac{2}{3}\left(\frac{1}{1-(2 x / 3)}\right)\right\}(4) \\
& =-\frac{2}{3}\left(1+\frac{2 x}{3}+\left(\frac{2 x}{3}\right)^{2}+\cdots\right) \\
& \left.=-\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n+1} x^{n} .\right\} \begin{array}{l}
\text { donot insist on } \\
\text { having this written }
\end{array}
\end{aligned}
$$

The series converges when $|2 x / 3|<1$. Therefore the radius of convergence is $R=3 / 2$. 1
(b) Use your answer from part (a) to find a power series centered at 0 for $f(x)$. Find the radius of convergence for the power series.

Solution: Integrating the series obtained in part (a), we get

$$
\left.\ln (3-2 x)=C-\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n+1} \frac{x^{n+1}}{n+1}\right\} 5
$$

and since $\ln (3-2 x)=\ln 3$ for $x=0$, we find $C=\ln 3$. Thus

$$
\left.\ln (3-2 x)=\ln 3-\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n+1} \frac{x^{n+1}}{n+1} .\right\} \infty(4)
$$

Term-by-term integration does not change the radius of convergence. Therefore $R=3 / 2$.

$$
\begin{aligned}
& \text { It is OK if the student writes } \\
& \ln (3-2 x)=\ln 3-\left(\frac{2}{3}\right) x-\left(\frac{2}{3}\right)^{2} \frac{x^{2}}{2}-\left(\frac{2}{3}\right)^{3} \frac{x^{3}}{3}-\cdots
\end{aligned}
$$

