EXAM 2

Name:	O
Name.	Section:
1101110	

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. You are allowed to use notes on a single piece of 8.5"X11" paper, front and back, including formulas and theorems. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. It will also help you check your answers to show work on multiple choice problems.

Multiple Choice Questions

1	A	B	\bigcirc	D	E		6	A	B	\bigcirc	D	E
_							_					(T

- 2 (A) (B) (C) (D) (E) 7 (A) (B) (C) (D) (E)
- **3** (A) (B) (C) (D) (E) **8** (A) (B) (C) (D) (E)
 - $f A \ B \ C \ D \ E \ f 9 \ A \ B \ C \ D \ E$
- **5** A B C D E **10** A B C D E

Multiple						Total
Choice	11	12	13	14	15	Score
50	10	10	10	10	10	100

Multiple Choice Questions

1. (5 points) Give the first five terms of the sequence $\{a_1, a_2, \ldots\}$ defined by

$$a_n = \frac{\cos(n\pi)}{n^2}.$$

- A. $\left\{\frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}\right\}$
- B. $\left\{\frac{-1}{1}, \frac{1}{8}, \frac{-1}{27}, \frac{1}{64}, \frac{-1}{125}\right\}$ C. $\left\{\frac{-1}{1}, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}\right\}$
- **D.** $\left\{\frac{-1}{1}, \frac{1}{4}, \frac{-1}{9}, \frac{1}{16}, \frac{-1}{25}\right\}$
- E. $\left\{\frac{1}{1}, \frac{-1}{4}, \frac{1}{9}, \frac{-1}{16}, \frac{1}{25}\right\}$

2. (5 points) Find the limit of the sequence $\{a_1, a_2, \ldots\}$ defined by

$$a_n = \frac{n+1}{\sqrt{n^2+5}}.$$

- **A.** 1
- B. 2
- C. 0
- D. $\frac{1}{5}$
- E. $\frac{1}{2}$

3. (5 points) Does the series $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$ converge or diverge?

- A. Diverges by a comparison test to $\sum_{n=1}^{\infty} \frac{1}{2^n}$.
- B. Converges because it is a geometric series and |r| < 1.
- C. Converges by the limit comparison test to $\sum_{n=1}^{\infty} \frac{1}{2^n}$.
- D. Converges because $\lim_{n\to\infty} \frac{1}{2^n 1} = 0$.
- E. Diverges by a comparison test to $\sum_{n=1}^{\infty} \frac{1}{n}$.

- 4. (5 points) Which of the following series converge?
 - $A. \sum_{n=1}^{\infty} \frac{(-1)^n}{2}$
 - B. $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$
 - C. $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{2}{3}}}$
 - $D. \sum_{n=2}^{\infty} \frac{1}{\ln(n^{\frac{3}{2}})}$
 - E. None of the above series converge.

- 5. (5 points) Find the sum of the series $\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{1}{4^n} \right)$
 - A. $\frac{10}{3}$ B. $\frac{3}{4}$ C. $\frac{7}{3}$

 - **D.** $\frac{4}{3}$
 - E. This series is divergent.

- 6. (5 points) What would you compare $\sum_{n=1}^{\infty} \frac{\sqrt{n^2+1}}{n^3+1}$ to for a conclusive limit comparison test?
 - A. $\sum_{n=1}^{\infty} \ln n$
 - **B.** $\sum_{n=1}^{\infty} \frac{1}{n^2}$
 - $C. \sum_{n=1}^{\infty} \frac{1}{n}$
 - D. $\sum_{n=1}^{\infty} \frac{1}{n^3}$
 - E. The limit comparison test can't be used to understand convergence for this series.

- 7. (5 points) Does the series $\sum_{n=1}^{\infty} \frac{n^2}{(2n)!}$ converge or diverge?
 - A. Converges by the ratio test because $\lim_{n\to\infty}\frac{(n+1)^2}{n^2(2n+2)(2n+1)}=0$
 - B. Converges by the ratio test because $\lim_{n\to\infty} \frac{(n+1)^2}{n^2} = 1$
 - C. Converges by the ratio test because $\lim_{n\to\infty} \frac{(n+1)^2}{(2n+2)(2n+1)} = 1$
 - D. Diverges by the ratio test because $\lim_{n\to\infty} \frac{n^2(2n+2)(2n+1)}{(n+1)^2} > 1$
 - E. Diverges by the ratio test because $\lim_{n\to\infty}\frac{n^2(2n+2)(2n+1)}{(n+1)^2}>0$

- 8. (5 points) What is the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^2}$?
 - A. [0, 2)
 - B. [-1,1)
 - C. [0, 2]
 - D. [-1, 1]
 - E. {1}
- 9. (5 points) Which power series represents **An Antiderivative** of $\frac{1}{1-x^3}$ on the interval (-1,1)?
 - A. $\sum_{n=0}^{\infty} \frac{x^{3n+1}}{3n+1}$
 - B. $\sum_{n=0}^{\infty} 3nx^{3n-1}$
 - C. $\sum_{n=0}^{\infty} (-1)^n x^{3n}$
 - $D. \sum_{n=0}^{\infty} x^{3n}$
 - E. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{3n+1}}{3n}$
- 10. (5 points) Find the first 3 nonzero terms of the Taylor series for $f(x) = \cos(\pi x)$ centered at 0.
 - A. $-\frac{\pi}{1!}x + \frac{\pi^3}{3!}x^3 \frac{\pi^5}{5!}x^5$
 - B. $1 + \frac{\pi}{1!}x + \frac{\pi^2}{2!}x^2$
 - C. $1 \frac{\pi}{1!}x + \frac{\pi^2}{2!}x^2$
 - D. $\frac{\pi}{2!}x^2 + \frac{\pi^3}{4!}x^3 + \frac{\pi^5}{6!}x^5$
 - **E.** $1 \frac{\pi^2}{(2!)}x^2 + \frac{\pi^4}{4!}x^4$

Free Response Questions

11. (a) (5 points) Use $\frac{2}{4n^2-1} = \frac{1}{2n-1} - \frac{1}{2n+1}$ to find a simpler expression for the k-th partial sum

$$\sum_{n=1}^{k} \frac{1}{4n^2 - 1}.$$

Solution: This is a telescoping series. $\frac{1}{2}\sum_{n=1}^{k}\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{1}{2}\left(1-\frac{1}{4k+1}\right)$

(b) (5 points) What is the sum of the series

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}?$$

Solution: The sum is the limit of the partial sums: $\lim_{k\to\infty} \frac{1}{2} \left(1 - \frac{1}{4k+1}\right) = \frac{1}{2}$

12. Are the series below absolutely convergent, conditionally convergent, or divergent? Justify your answer.

(a) (4 points)
$$\sum_{n=1}^{\infty} \left(\frac{5n^3}{3+n+7n^3} \right)^n$$

Solution: Use the root test: $\lim_{n\to\infty}\left|\left(\frac{5n^3}{3+n+7n^3}\right)^n\right|^{\frac{1}{n}}=\lim_{n\to\infty}\frac{5n^3}{3+n+7n^3}=\frac{5}{7}<1$, so this series absolutely converges.

(b) (6 points) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2 - 2n}{n^3 + 1}$

Solution: This series conditionally converges by the alternating series test:

$$\lim_{n \to \infty} \frac{n^2 - 2n}{n^3 + 1} = 0$$

$$\left(\frac{x^2 - 2x}{x^3 + 1}\right)' = \text{is negative when } x \ge 10,$$

But the absolute value series diverges by a limit comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$. So the series is conditionally convergent.

13. (a) (5 points) What is the **radius** of convergence of the power series $\sum_{n=1}^{\infty} \frac{n^2+1}{4^n} x^n$?

Solution: The ratio test shows that this series converges absolutely when

$$\lim_{n\to\infty}\frac{(n+1)^2+1}{4^{n+1}}\frac{4^n}{n^2+1}|x|=\frac{1}{4}|x|<1$$

So the radius of convergence is 4.

(b) (5 points) What is the **radius** of convergence of the power series $\sum_{n=1}^{\infty} \frac{n!}{n^2} (x-1)^n$? What is the **interval** of convergence? Clearly label your answers.

Solution: The ratio test shows that this series converges absolutely when

$$\lim_{n \to \infty} \frac{(n+1)!}{(n+1)^2} \frac{n^2}{n!} |x-1| = \lim_{n \to \infty} \frac{n^2}{n+1} |x-1| < 1$$

This happens only when x = 1. So the radius is 0 and the interval is [1, 1].

14. (a) (6 points) Find the first 2 nonzero terms in the Taylor series for $\sqrt{1+x^2}$ centered at zero.

Solution: We take some derivatives and plug in 0:

$$\sqrt{1+x^2}$$

$$\frac{d}{dx}\left(\sqrt{1+x^2}\right)' = \frac{x}{\sqrt{1+x^2}}$$

$$\frac{d}{dx}\left(\sqrt{1+x^2}\right)'' = \frac{1}{(1+x^2)^{\frac{3}{2}}}$$

so f(0) = 1, f'(0) = 0, f''(0) = 1, and the Taylor series starts $1 + \frac{1}{2}x^2 + \dots$

(b) (4 points) Use your solution to part (a) to estimate $\int_0^1 \sqrt{1+x^2} dx$.

Solution: Take the integral $\int_0^1 1 + \frac{1}{2}x^2 dx$ to get $[x + \frac{1}{6}x^3]_0^1 = 1 + \frac{1}{6}$.

15. (a) (5 points) Find the Taylor series for the function $f(x) = \frac{x}{1-x^2}$ centered at 0.

Solution: This is $x\left(\frac{1}{1-x^2}\right) = x \sum_{n=0}^{\infty} (x^2)^n = \sum_{n=0}^{\infty} x^{2n+1}$

(b) (5 points) Use your answer in part (a) to find the Taylor series centered at 0 for the function $g(x) = \ln(1-x^2)$. (**Hint:** It will help to find the antiderivative of f(x) in part (a).)

Solution: $-\frac{1}{2}\ln(1-x^2) = \int \frac{x}{1-x^2} dx = \sum_{n=0}^{\infty} \int x^{2n+1} dx = \sum_{n=0}^{\infty} \frac{1}{2n+2} x^{2n+2}$