Exam 3

Multiple Choice Questions

1. Find the average value of the function $f(x) = 2 \sin x - \sin 2x$ on $0 \le x \le \pi$.

2. Find the volume of the solid *S* whose base is the disk bounded by the circle $x^2 + y^2 = r^2$ and the parallel cross-sections perpendicular to the base are squares.

A.
$$\frac{8}{3}r^{3}$$

B. $\frac{16}{3}r^{3}$
C. $\frac{4}{3}r^{3}$
D. $\frac{2}{3}r^{3}$
E. 0

- 3. Consider the parametric curve $(x(t), y(t)) = (\sin(\pi t), \cos(\pi t))$. At which value of *t* does the curve pass through (0, -1)?
 - A. t = 0B. t = 1/2C. t = 1D. t = 3/2E. t = 2

- 4. Find the center of mass of a lamina (or thin plate) that occupies the region $R = \{(x, y) | 0 \le y \le \sqrt{4 x^2}\}.$
 - A. (0,1)B. $\left(0,\frac{1}{2}\right)$ C. $\left(0,\frac{9}{4\pi}\right)$ D. $\left(0,\frac{8}{3\pi}\right)$ E. $\left(0,\frac{5}{6}\right)$

5. Consider the curve of points (x, y) that satisfy the equation $y = x^2$ and lies on the parabola between the points (2, 4) and (3, 9). Write an integral whose value is the length of this curve.

A.
$$\int_{2}^{3} \sqrt{1 + 2x^{2}} dx$$

B. $\int_{4}^{9} \sqrt{1 + 4x^{2}} dx$
C. $\int_{4}^{9} \sqrt{1 + x^{4}} dx$
D. $\int_{2}^{3} \sqrt{1 + x^{4}} dx$
E. $\int_{2}^{3} \sqrt{1 + 4x^{2}} dx$

6. An auxiliary fuel tank for a helicopter is shaped like the surface generated by revolving the curve $y = 1 - \frac{x^2}{4}$, $-2 \le x \le 2$, about the *x*-axis (dimensions are in feet). Find the integral that computes how many cubic feet of fuel the tank will hold.

A.
$$\int_{-2}^{2} \pi \left(1 - \frac{x^{2}}{4} \right) dx$$

B.
$$\int_{-2}^{2} 2\pi x \left(1 - \frac{x^{2}}{4} \right) dx$$

C.
$$\int_{-2}^{2} \pi \left(1 - \frac{x^{2}}{4} \right)^{2} dx$$

D.
$$\int_{-2}^{2} 2\pi \left(1 - \frac{x^{2}}{4} \right) \sqrt{1 + \frac{x^{2}}{4}} dx$$

E.
$$\int_{-2}^{2} \pi \sqrt{1 + \frac{x^{2}}{4}} dx$$

Exam 3

7. Find $\frac{dy}{dx}$ for the curve given by $x = te^t$ and $y = 2t - 3e^t$. A. $2 - 3e^t$ B. $\frac{2 - 3e^t}{e^t + te^t}$ C. $(1 + t)e^t$ D. $\frac{e^t + te^t}{2 - 3e^t}$ E. $\frac{2 - 3e^t}{e^t}$

8. Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 0 and x = 1 about the line y = -3.

A.
$$\frac{52\pi}{63}$$

B.
$$\frac{23\pi}{24}$$

C.
$$7\pi$$

D.
$$\frac{23\pi}{14}$$

E.
$$24\pi$$

Exam 3

9. Write out the first four terms of the Maclaurin series of f(x) if

$$f(0) = -1$$
, $f'(0) = 13$, $f''(0) = -1$, and $f'''(0) = 3$.

A.
$$-1 + 13x - \frac{1}{2}x^2 + \frac{1}{2}x^3$$

B. $-1 - 13x - \frac{1}{2}x^2 - \frac{1}{2}x^3$
C. $-1 + 13x + \frac{1}{2}x^2 + \frac{1}{2}x^3$
D. $-1 + 13x + x^2 + 3x^3$
E. $-1 + 13x - x^2 + 3x^3$

10. Using the parameterization $x = a \cos t$, $y = b \sin t$, $0 \le t \le 2\pi$, which of the following definite integrals represents the surface area of the region obtained by rotating the $x^2 = y^2$

ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 about the x-axis.
A. $\int_0^{\pi} 2\pi a \cos t \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} dt$
B. $\int_0^{\pi} 2\pi b \sin t \sqrt{a^2 \cos^2 t + b^2 \sin^2 t} dt$
C. $\int_0^{\pi} 2\pi a \cos t \sqrt{a^2 \cos^2 t + b^2 \sin^2 t} dt$
D. $\int_0^{\pi} 2\pi a b \sin t \cos t \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} dt$
E. $\int_0^{\pi} 2\pi b \sin t \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} dt$

Free Response Questions

- 11. Consider the function $f(x) = x^3 + x + 1$.
 - (a) (5 points) Find all derivatives, $f^{(n)}(x)$ of f(x).

Solution:

- $f(x) = x^{3} + x + 1$ $f'(x) = 3x^{2} + 1$ f''(x) = 6x f'''(x) = 6 $f^{(n)}(x) = 0, \quad n \ge 4$
- (b) (5 points) Find the Taylor series for f(x) centered at a = 1.

Solution: $f(1) = 3, \quad f'(1) = 4, \quad f''(1) = 6, \quad f'''(1) = 6$ $T(x) = f(1) + f'(1)(x - 1) + \frac{f''(x)}{2!}(x - 1)^2 + \frac{f'''x}{3!}(x - 1)^3$ $= 3 + 4(x - 1) + 3(x - 1)^2 + (x - 1)^3$

(c) (3 points) Find the radius of convergence for this Taylor series.

Solution: The radius of convergence is ∞ since the Taylor series is a polynomial.

- 12. Let *R* be the region bounded by $y = e^{-x^2}$, y = 0, x = 0 and x = 1.
 - (a) (5 points) Using the method of cylindrical shells write down the integral needed to find the volume generated by rotating *R* about the *y*-axis.

Solution: $V = \int_0^1 2\pi x f(x) \, dx = 2\pi \int_0^1 x e^{-x^2} dx.$

(b) (5 points) **Showing all of your work**, evaluate this integral.

Solution: $2\pi \int_0^1 x e^{-x^2} dx = -\pi e^{-x^2} \Big|_0^1 = \pi \left(1 - \frac{1}{e}\right).$

- 13. Consider the parametric curve *C* given by $\{(t, \frac{2}{3}t^{3/2}) : 0 \le t \le T\}.$
 - (a) (4 points) Write an integral for the length of the curve *C*.

Solution:
$$x'(t) = 1$$
 and $y'(t) = t^{1/2} = \sqrt{t}$.

$$L = \int_0^T \sqrt{[x'(t)]^2 + [y'(t)]^2} dt = \int_0^T \sqrt{1+t} dt$$

(b) (5 points) Evaluate the integral you found to express the length as a function of *T*.

(c) (4 points) Find the value of *T* for which the curve has length 14/3.

Solution:

$$\frac{2}{3} \left((1+T)^{3/2} - 1 \right) = \frac{14}{3}$$
$$(1-T)^{3/2} - 1 = 7$$
$$(1-T)^{3/2} = 8$$
$$T = 3$$

- 14. Consider the parametric curve *C* given by $(x(t), y(t)) = (t^2 + t, t^2 t)$ for *t* in the real numbers.
 - (a) (5 points) Find the tangent line to the curve at the point (x, y) = (2, 0). Give your answer in the form y = mx + b.

Solution:	
	$\frac{dx}{dt} = 2t + 1$
	$\frac{dt}{dt} = 2t - 1$
	$\frac{dt}{dy} = \frac{dy}{dt} = \frac{2t-1}{2t-1}$
	$\frac{1}{dx} - \frac{1}{dx/dt} - \frac{1}{2t+1}$
	$m = \left. \frac{dy}{dx} \right _{t=1} = \frac{1}{3}$
	$y - 0 = \frac{2}{3}(x - 2)$
	$y = \frac{2}{3}x - \frac{4}{3}$

(b) (4 points) Find the point(s) (*x*, *y*) on the curve where the tangent line is horizontal. Show your work.

Solution: Find where
$$\frac{dy}{dt} = 0$$
.

$$\frac{dy}{dt} = 0$$

$$2t - 1 = 0$$

$$t = \frac{1}{2}$$
The point on the curve is $\left(x\left(\frac{1}{2}\right), y\left(\frac{1}{2}\right)\right) = \left(\frac{3}{4}, -\frac{1}{4}\right)$.

15. (5 points) Set up but do not evaluate the integral that gives the surface area of revolution generated by rotating the graph of $y = x - x^2$, $0 \le x \le 1$, around the *x*-axis.

Solution:

$$SA = \int_0^1 2\pi f(x) \sqrt{1 + [f'(x)]^2} \, dx$$

$$= \int_0^1 2\pi (x - x^2) \sqrt{1 + (1 - 2x)^2} \, dx$$

$$= \int_0^1 2\pi (x - x^2) \sqrt{2 - 4x + 4x^2} \, dx$$