Exam 3

Multiple Choice Questions

1. Find the average value of the function $f(x)=2 \sin x-\sin 2 x$ on $0 \leq x \leq \pi$.
A. $\frac{4}{\pi}$
B. $\frac{5}{\pi}$
C. 0
D. 4
E. 5
2. Find the volume of the solid S whose base is the disk bounded by the circle $x^{2}+y^{2}=$ r^{2} and the parallel cross-sections perpendicular to the base are squares.
A. $\frac{8}{3} r^{3}$
B. $\frac{16}{3} r^{3}$
C. $\frac{4}{3} r^{3}$
D. $\frac{2}{3} r^{3}$
E. 0
3. Consider the parametric curve $(x(t), y(t))=(\sin (\pi t), \cos (\pi t))$. At which value of t does the curve pass through $(0,-1)$?
A. $t=0$
B. $t=1 / 2$
C. $t=1$
D. $t=3 / 2$
E. $t=2$
4. Find the center of mass of a lamina (or thin plate) that occupies the region $R=$ $\left\{(x, y) \mid 0 \leq y \leq \sqrt{4-x^{2}}\right\}$.
A. $(0,1)$
B. $\left(0, \frac{1}{2}\right)$
C. $\left(0, \frac{9}{4 \pi}\right)$
D. $\left(0, \frac{8}{3 \pi}\right)$
E. $\left(0, \frac{5}{6}\right)$
5. Consider the curve of points (x, y) that satisfy the equation $y=x^{2}$ and lies on the parabola between the points $(2,4)$ and $(3,9)$. Write an integral whose value is the length of this curve.
A. $\int_{2}^{3} \sqrt{1+2 x^{2}} d x$
B. $\int_{4}^{9} \sqrt{1+4 x^{2}} d x$
C. $\int_{4}^{9} \sqrt{1+x^{4}} d x$
D. $\int_{2}^{3} \sqrt{1+x^{4}} d x$
E. $\int_{2}^{3} \sqrt{1+4 x^{2}} d x$
6. An auxiliary fuel tank for a helicopter is shaped like the surface generated by revolving the curve $y=1-\frac{x^{2}}{4},-2 \leq x \leq 2$, about the x-axis (dimensions are in feet). Find the integral that computes how many cubic feet of fuel the tank will hold.
A. $\int_{-2}^{2} \pi\left(1-\frac{x^{2}}{4}\right) d x$
B. $\int_{-2}^{2} 2 \pi x\left(1-\frac{x^{2}}{4}\right) d x$
C. $\int_{-2}^{2} \pi\left(1-\frac{x^{2}}{4}\right)^{2} d x$
D. $\int_{-2}^{2} 2 \pi\left(1-\frac{x^{2}}{4}\right) \sqrt{1+\frac{x^{2}}{4}} d x$
E. $\int_{-2}^{2} \pi \sqrt{1+\frac{x^{2}}{4}} d x$
7. Find $\frac{d y}{d x}$ for the curve given by $x=t e^{t}$ and $y=2 t-3 e^{t}$.
A. $2-3 e^{t}$
B. $\frac{2-3 e^{t}}{e^{t}+t e^{t}}$
C. $(1+t) e^{t}$
D. $\frac{e^{t}+t e^{t}}{2-3 e^{t}}$
E. $\frac{2-3 e^{t}}{e^{t}}$
8. Find the volume of the solid obtained by rotating the region bounded by $y=x^{3}$, $y=0$ and $x=1$ about the line $y=-3$.
A. $\frac{52 \pi}{63}$
B. $\frac{23 \pi}{24}$
C. 7π
D. $\frac{23 \pi}{14}$
E. 24π
9. Write out the first four terms of the Maclaurin series of $f(x)$ if

$$
f(0)=-1, f^{\prime}(0)=13, f^{\prime \prime}(0)=-1, \text { and } f^{\prime \prime \prime}(0)=3
$$

A. $-1+13 x-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}$
B. $-1-13 x-\frac{1}{2} x^{2}-\frac{1}{2} x^{3}$
C. $-1+13 x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}$
D. $-1+13 x+x^{2}+3 x^{3}$
E. $-1+13 x-x^{2}+3 x^{3}$
10. Using the parameterization $x=a \cos t, y=b \sin t, 0 \leq t \leq 2 \pi$, which of the following definite integrals represents the surface area of the region obtained by rotating the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about the x-axis.
A. $\int_{0}^{\pi} 2 \pi a \cos t \sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t} d t$
B. $\int_{0}^{\pi} 2 \pi b \sin t \sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t} d t$
C. $\int_{0}^{\pi} 2 \pi a \cos t \sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t} d t$
D. $\int_{0}^{\pi} 2 \pi a b \sin t \cos t \sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t} d t$
E. $\int_{0}^{\pi} 2 \pi b \sin t \sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t} d t$

Free Response Questions

11. Consider the function $f(x)=x^{3}+x+1$.
(a) (5 points) Find all derivatives, $f^{(n)}(x)$ of $f(x)$.

Solution:

$$
\begin{aligned}
f(x) & =x^{3}+x+1 \\
f^{\prime}(x) & =3 x^{2}+1 \\
f^{\prime \prime}(x) & =6 x \\
f^{\prime \prime \prime}(x) & =6 \\
f^{(n)}(x) & =0, \quad n \geq 4
\end{aligned}
$$

(b) (5 points) Find the Taylor series for $f(x)$ centered at $a=1$.

Solution:

$$
\begin{aligned}
f(1) & =3, \quad f^{\prime}(1)=4, \quad f^{\prime \prime}(1)=6, \quad f^{\prime \prime \prime}(1)=6 \\
T(x) & =f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(x)}{2!}(x-1)^{2}+\frac{f^{\prime \prime \prime} x}{3!}(x-1)^{3} \\
& =3+4(x-1)+3(x-1)^{2}+(x-1)^{3}
\end{aligned}
$$

(c) (3 points) Find the radius of convergence for this Taylor series.

Solution: The radius of convergence is ∞ since the Taylor series is a polynomial.
12. Let R be the region bounded by $y=e^{-x^{2}}, y=0, x=0$ and $x=1$.
(a) (5 points) Using the method of cylindrical shells write down the integral needed to find the volume generated by rotating R about the y-axis.

Solution:

$$
V=\int_{0}^{1} 2 \pi x f(x) d x=2 \pi \int_{0}^{1} x e^{-x^{2}} d x
$$

(b) (5 points) Showing all of your work, evaluate this integral.

Solution:

$$
2 \pi \int_{0}^{1} x e^{-x^{2}} d x=-\left.\pi e^{-x^{2}}\right|_{0} ^{1}=\pi\left(1-\frac{1}{e}\right)
$$

13. Consider the parametric curve C given by $\left\{\left(t, \frac{2}{3} t^{3 / 2}\right): 0 \leq t \leq T\right\}$.
(a) (4 points) Write an integral for the length of the curve C.

Solution: $x^{\prime}(t)=1$ and $y^{\prime}(t)=t^{1 / 2}=\sqrt{t}$.

$$
L=\int_{0}^{T} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t=\int_{0}^{T} \sqrt{1+t} d t
$$

(b) (5 points) Evaluate the integral you found to express the length as a function of T.

Solution:

$$
L=\int_{0}^{T} \sqrt{1+t} d t=\left.\frac{2}{3}(1+t)^{3 / 2}\right|_{0} ^{T}=\frac{2}{3}\left((1+T)^{3 / 2}-1\right)
$$

(c) (4 points) Find the value of T for which the curve has length $14 / 3$.

Solution:

$$
\begin{aligned}
\frac{2}{3}\left((1+T)^{3 / 2}-1\right) & =\frac{14}{3} \\
(1-T)^{3 / 2}-1 & =7 \\
(1-T)^{3 / 2} & =8 \\
T & =3
\end{aligned}
$$

14. Consider the parametric curve C given by $(x(t), y(t))=\left(t^{2}+t, t^{2}-t\right)$ for t in the real numbers.
(a) (5 points) Find the tangent line to the curve at the point $(x, y)=(2,0)$. Give your answer in the form $y=m x+b$.

Solution:

$$
\begin{aligned}
\frac{d x}{d t} & =2 t+1 \\
\frac{d y}{d t} & =2 t-1 \\
\frac{d y}{d x} & =\frac{d y / d t}{d x / d t}=\frac{2 t-1}{2 t+1} \\
m & =\left.\frac{d y}{d x}\right|_{t=1}=\frac{1}{3} \\
y-0 & =\frac{2}{3}(x-2) \\
y & =\frac{2}{3} x-\frac{4}{3}
\end{aligned}
$$

(b) (4 points) Find the point(s) (x, y) on the curve where the tangent line is horizontal. Show your work.

Solution: Find where $\frac{d y}{d t}=0$.

$$
\begin{aligned}
\frac{d y}{d t} & =0 \\
2 t-1 & =0 \\
t & =\frac{1}{2}
\end{aligned}
$$

The point on the curve is $\left(x\left(\frac{1}{2}\right), y\left(\frac{1}{2}\right)\right)=\left(\frac{3}{4},-\frac{1}{4}\right)$.
15. (5 points) Set up but do not evaluate the integral that gives the surface area of revolution generated by rotating the graph of $y=x-x^{2}, 0 \leq x \leq 1$, around the x-axis.

Solution:

$$
\begin{aligned}
S A & =\int_{0}^{1} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \\
& =\int_{0}^{1} 2 \pi\left(x-x^{2}\right) \sqrt{1+(1-2 x)^{2}} d x \\
& =\int_{0}^{1} 2 \pi\left(x-x^{2}\right) \sqrt{2-4 x+4 x^{2}} d x
\end{aligned}
$$

