MA 114 — Calculus II Spring 2015 Exam 3 Apr. 14, 2015

Name: _____

Section: _____

Last 4 digits of student ID #: _____

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.
- Multiple Choice Questions: Record your answers on the right of this cover page by marking the box corresponding to the correct answer.
- Free Response Questions: Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.

Multiple Choice Answers

Question					
1	A	В	С	D	Е
2	А	В	С	D	Е
3	А	В	С	D	Е
4	А	В	С	D	Е
5	А	В	С	D	Е
6	А	В	С	D	Е
7	А	В	С	D	Е

Exam Scores

Question	Score	Total
MC		28
8		15
9		13
10		14
11		15
12		15
Total		100

Unsupported answers for the free response questions may not receive credit!

- 1. Which trigonometric substitution is needed to evaluate the integral $\int \frac{1}{(9x^2-1)^{3/2}} dx$?
 - A. $x = 9 \sec \theta$.
 - B. $x = 3 \sec \theta$.
 - C. $x = \frac{1}{3}\sec\theta$.
 - D. $x = 3 \tan \theta$.

E.
$$x = \frac{1}{3}\tan\theta$$
.

2. Which of the following is the correct form for the partial fraction decomposition of

$$\frac{6x^2 + 7x - 6}{(x-2)(x+2)^2}?$$

A.
$$\frac{A}{x-2} + \frac{B}{x+2}$$
.
B. $\frac{A}{x-2} + \frac{B}{(x+2)^2}$.
C. $\frac{A}{(x-2)(x+2)} + \frac{B}{x+2} + \frac{C}{x-2}$.
D. $\frac{Ax+B}{(x-2)(x+2)} + \frac{C}{x+2}$.

E.
$$\frac{A}{x-2} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$$

3. Which of the following integrals represents the arclength of the curve $y = \ln(\sin x)$ over the interval $[\frac{\pi}{6}, \frac{\pi}{4}]$?

A.
$$\int_{\pi/6}^{\pi/4} \sqrt{1 + \cot^2 x} \, dx.$$

B.
$$\int_{\pi/6}^{\pi/4} \sqrt{1 + (\ln(\sin x))^2} \, dx$$

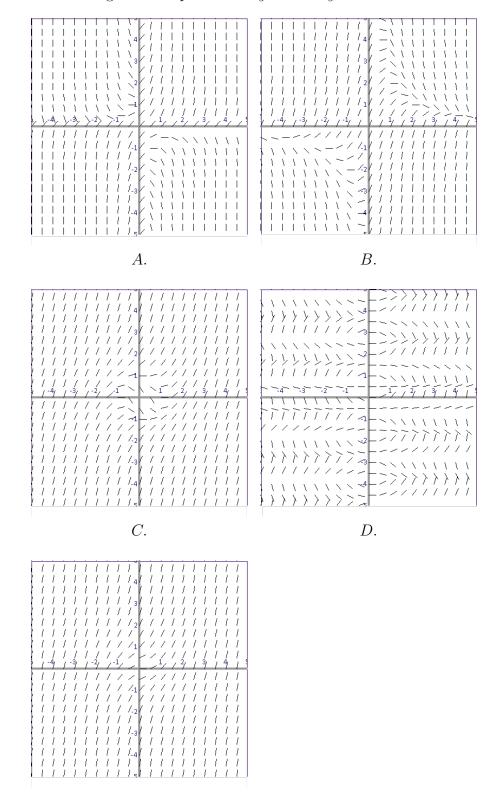
C.
$$\int_{\pi/6}^{\pi/4} \frac{1}{2} \pi \sqrt{1 + \ln(\sin^2 x)} \, dx.$$

D.
$$\int_{\pi/6}^{\pi/4} \frac{1}{2} \pi \sqrt{1 + \tan^2 x} \, dx.$$

E.
$$\int_{\pi/6}^{\pi/4} \pi \sqrt{1 - \cot^2 x} \, dx.$$

- 4. What is the surface area of the surface generated by rotating the graph of $y = \sqrt{25 x^2}$ about the x-axis for $-2 \le x \le 3$?
 - A. 50π .
 - B. 25π .
 - C. 20π .
 - D. 10π .
 - E. 5π .

5. Which of the following integrals represents the x-moment M_x of a thin plate of constant density $\rho = 4$ covering the region enclosed by the parabola $y = x^2$ and the line y = 1?


A.
$$\int_{-1}^{1} 4(1-x^{2})^{2} dx.$$

B.
$$\int_{-1}^{1} 4(x^{4}-1) dx.$$

C.
$$\int_{-1}^{1} 2(1-x^{4}) dx.$$

D.
$$\int_{-1}^{1} 4(x^{3}-x) dx.$$

E.
$$\int_{-1}^{1} 2(x^{2}-1) dx.$$

6. Which of the following differential equations are separable?

(I)
$$xy' - 3y^2 = 0.$$
 (II) $y' = xy - 3x^2.$ (III) $5y' = 9 - y$

- A. (I) only.
- B. (II) only.
- C. (III) only.
- D. (I) and (II) only.
- E. (I) and (III) only.

7. Which of the following is the slope field for y' = 2 - xy?

E.

8. Evaluate the integral

$$\int \frac{x^2}{\sqrt{16 - x^2}} \, dx.$$

Hint: you may wish to use some of these identities:

$$\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta) \qquad \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta) \qquad \sin 2\theta = 2\sin \theta \cos \theta.$$

9. Compute the arclength of the curve $y = \frac{1}{3}x^{3/2}$ over the interval [0, 4].

10. (a) Find the partial fraction decomposition of the rational function $\frac{2x^2 - x + 3}{(x-1)(x^2+1)}$.

(b) Evaluate the integral $\int \frac{3x^2 - 10x + 4}{(x - 5)(x^2 + 4)} dx$. You may use the identity $\frac{3x^2 - 10x + 4}{(x - 5)(x^2 + 4)} = \frac{1}{x - 5} + \frac{2x}{x^2 + 4}.$ **11.** (a) Find the general solution to the differential equation $(1 + x^2)y' = xy$.

(b) Solve the initial value problem $y' = xe^{-y}, y(1) = 0.$

12. A bourbon pecan pie is taken out of the oven at 395°F and left to cool in a room of 75°F. Suppose the temperature of the pie fell to 235°F in half an hour.

Let y(t) be the temperature of the pie after t hours. Newton's Law of Cooling states that y(t) satisfies the differential equation $y'(t) = -k(y(t) - T_0)$, where T_0 is the ambient temperature.

(a) Give the general solution to the differential equation, and find the cooling constant k.

(b) What is the temperature of the pie t hours after it is taken out of the oven?

(c) What is the temperature of the pie 2 hours after it is taken out of the oven? Simplify your final answer as much as possible, showing all work.