MA 114 — Calculus II Spring 2015 Exam 3 Apr. 14, 2015

Name: \_\_\_\_\_

Section: \_\_\_\_\_

## Last 4 digits of student ID #: \_\_\_\_\_

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.
- Multiple Choice Questions: Record your answers on the right of this cover page by marking the box corresponding to the correct answer.
- Free Response Questions: Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.

#### Multiple Choice Answers



#### Exam Scores

| Question | Score | Total |
|----------|-------|-------|
| MC       |       | 28    |
| 8        |       | 15    |
| 9        |       | 13    |
| 10       |       | 14    |
| 11       |       | 15    |
| 12       |       | 15    |
| Total    |       | 100   |

# Unsupported answers for the free response questions may not receive credit!

- 1. Which trigonometric substitution is needed to evaluate the integral  $\int \frac{1}{(9x^2-1)^{3/2}} dx$ ?
  - A.  $x = 9 \sec \theta$ . B.  $x = 3 \sec \theta$ . C.  $x = \frac{1}{3} \sec \theta$ . D.  $x = 3 \tan \theta$ . E.  $x = \frac{1}{3} \tan \theta$ .  $9\chi^2 - I = (3\chi)^2 - I^2$   $let = 3\chi = sec \theta$   $oR = \frac{1}{3} sec \theta$ .  $\chi = \frac{1}{3} sec \theta$ .

2. Which of the following is the correct form for the partial fraction decomposition of

$$\frac{6x^{2} + 7x - 6}{(x - 2)(x + 2)^{2}}?$$
A.  $\frac{A}{x - 2} + \frac{B}{x + 2}$ .  
B.  $\frac{A}{x - 2} + \frac{B}{(x + 2)^{2}}$ .  
C.  $\frac{A}{(x - 2)(x + 2)} + \frac{B}{x + 2} + \frac{C}{x - 2}$ .  
D.  $\frac{Ax + B}{(x - 2)(x + 2)} + \frac{C}{x + 2}$ .  
E.  $\frac{A}{x - 2} + \frac{B}{x + 2} + \frac{C}{(x + 2)^{2}}$ .

3. Which of the following integrals represents the arclength of the curve  $y = \ln(\sin x)$  over the interval  $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ ?

$$(A) \int_{\pi/6}^{\pi/4} \sqrt{1 + \cot^2 x} \, dx.$$

$$S = \int_{\pi/6}^{\pi/4} \sqrt{1 + (\gamma')^2} \, dx$$

$$Y' = \frac{\cos x}{\sin x} = \cot x.$$

$$C. \int_{\pi/6}^{\pi/4} \frac{1}{2}\pi \sqrt{1 + \ln(\sin^2 x)} \, dx.$$

$$D. \int_{\pi/6}^{\pi/4} \frac{1}{2}\pi \sqrt{1 + \tan^2 x} \, dx.$$

$$E. \int_{\pi/6}^{\pi/4} \pi \sqrt{1 - \cot^2 x} \, dx.$$

4. What is the surface area of the surface generated by rotating the graph of  $y = \sqrt{25 - x^2}$  about the x-axis for  $-2 \le x \le 3$ ?

.

$$\begin{array}{cccc}
 A. 50\pi. & & & & & & & & \\
 B. 25\pi. & & & & & \\
 B. 25\pi. & & & & \\
 C. 20\pi. & & & & \\
 D. 10\pi. & & & & \\
 E. 5\pi. & & & & = \int_{-2}^{3} 2\pi \sqrt{25 - x^2} \sqrt{1 + \frac{x^2}{25 - x^2}} dx \\
 & & & = \int_{-2}^{3} 2\pi \sqrt{25 - x^2 + x^2} dx \\
 & & & = \int_{-2}^{3} 2\pi \sqrt{25 - x^2 + x^2} dx \\
 & & & = \int_{-2}^{3} 10\pi dx \\
 & & & = 50\pi. \end{array}$$

5. Which of the following integrals represents the x-moment  $M_x$  of a thin plate of constant density  $\rho = 4$  covering the region enclosed by the parabola  $y = x^2$  and the line y = 1?

A. 
$$\int_{-1}^{1} 4(1-x^{2})^{2} dx.$$
 Intersection  $x^{2} = 1 \implies x = \pm 1$ .  
B. 
$$\int_{-1}^{1} 4(x^{4}-1) dx.$$

$$M_{x} = \frac{1}{2} \rho \int_{-1}^{1} 1^{2} - (x^{2})^{2} dx$$

$$= 2 \int_{-1}^{1} 1 - x^{4} dx$$
D. 
$$\int_{-1}^{1} 4(x^{3}-x) dx.$$
E. 
$$\int_{-1}^{1} 2(x^{2}-1) dx.$$

- 6. Which of the following differential equations are separable?
  - (I)  $xy' 3y^2 = 0.$  (II)  $y' = xy 3x^2.$  (III) 5y' = 9 y.A. (I) only. (I) only. (I) only. (II) only. (II) only. (II) only. (II) only. (II) only.

(

7. Which of the following is the slope field for y' = 2 - xy?



5

8. Evaluate the integral

$$\int \frac{x^2}{\sqrt{16 - x^2}} \, dx.$$

Hint: you may wish to use some of these identities:

$$\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta) \qquad \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta) \qquad \sin 2\theta = 2\sin \theta \cos \theta.$$

Let 
$$x = 4 \sin \theta$$
  
 $dx = 4 \cos \theta \, d\theta$   
 $\sqrt{16 - \chi^2} = \sqrt{16 - 16 \sin^2 \theta} = \sqrt{16 \cos^2 \theta} = 4 \cos \theta.$ 

$$\int \frac{x^{2}}{\sqrt{16-x^{2}}} dx = \int \frac{16 \sin^{2}\theta}{4\cos\theta} 4\cos\theta d\theta$$

$$= \int 16 \sin^{2}\theta d\theta$$

$$= \int 8(1-\cos2\theta) d\theta$$

$$= 8\theta - 4\sin2\theta + C$$

$$= 8 \arcsin\left(\frac{x}{4}\right) - 8 \sin\theta\cos\theta + C$$

$$= 8 \arcsin\left(\frac{x}{4}\right) - 8\left(\frac{x}{4}\right)\left(\sqrt{\frac{16-x^{2}}{4}}\right) + C$$

$$= 8 \arcsin\left(\frac{x}{4}\right) - \frac{1}{2}x\sqrt{16-x^{2}} + C$$

4

9. Compute the arclength of the curve  $y = \frac{1}{3}x^{3/2}$  over the interval [0, 4].

$$\begin{aligned} \gamma' &= \frac{1}{3} \frac{3}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \\ S &= \int_{-1}^{4} \sqrt{1 + \frac{1}{4} \times} dx \\ &= \int_{-1}^{2} 4u^{\frac{1}{2}} du \\ &= 4\left(\frac{2}{3}u^{\frac{3}{2}}\right) \Big|_{1}^{2} \\ &= \frac{3}{3}\left(\frac{2^{\frac{3}{2}} - 1}{2^{\frac{1}{2}} - 1}\right) \\ &= \frac{3}{3}\left(\frac{2\sqrt{2} - 1}{2^{\frac{1}{2}} - 1}\right) \end{aligned}$$

**10.** (a) Find the partial fraction decomposition of the rational function  $\frac{2x^2 - x + 3}{(x-1)(x^2+1)}$ .

$$\frac{2x^{2}-x+3}{(x-1)(x^{2}+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^{2}+1}$$
  
A  $(x^{2}+1) + (Bx+C)(x-1) = 2x^{2}-x+3$ .
  
 $x=1: 2A + 0 = 4 \implies A=2$ .
  
 $x=0: A - C = 3 \implies C = A - 3 = -1$ .
  
 $x=2: 5A + 2B + C = 9 \implies 10 + 2B - 1 = 9$ 
  
 $\implies B = 0$ .
  
Therefore,  $\frac{2x^{2}-x+3}{(x-1)(x^{2}+1)} = \frac{2}{x-1} - \frac{1}{x^{2}+1}$ .
  
(3)

(b) Evaluate the integral  $\int \frac{3x^2 - 10x + 4}{(x - 5)(x^2 + 4)} dx$ . You may use the identity  $\frac{3x^2 - 10x + 4}{(x - 5)(x^2 + 4)} = \frac{1}{x - 5} + \frac{2x}{x^2 + 4}.$ 

$$\int \frac{3x^2 - 10x + 4}{(x - 5)(x^2 + 4)} \, dx = \int \frac{1}{x - 5} + \frac{2x}{x^2 + 4} \, dx$$
$$= |n||x - 5|| + |n||x^2 + 4|| + C.$$

**11.** (a) Find the general solution to the differential equation  $(1 + x^2)y' = xy$ .

$$y' dy = \frac{x}{1+x^{2}} dx$$

$$\int y' dy = \int \frac{x}{1+x^{2}} dx$$

$$\ln |y| = \frac{1}{2} \ln |1+x^{2}| + C$$

Since 
$$y=0$$
 is a solution  $((1+x)y'=0=xy)$ , then the general solution is  $y = C\sqrt{1+x^2}$ ,  $C \in \mathbb{R}$ .

(b) Solve the initial value problem  $y' = xe^{-y}, y(1) = 0.$ 

$$e^{y} dy = x dx$$

$$\int e^{y} dy = \int x dx$$

$$e^{y} = \frac{1}{2}x^{2} + C$$

$$y = \ln(\frac{1}{2}x^{2} + C)$$

$$y(1) = 0 = \ln(\frac{1}{2} + C) \implies C = e^{0} - \frac{1}{2} = \frac{1}{2}$$
Therefore,  $y(x) = \ln(\frac{1}{2}x^{2} + \frac{1}{2})$ .
(3)

٦

2

5

12. A bourbon pecan pie is taken out of the oven at 395°F and left to cool in a room of 75°F. Suppose the temperature of the pie fell to 235°F in half an hour.

Let y(t) be the temperature of the pie after t hours. Newton's Law of Cooling states that y(t) satisfies the differential equation  $y'(t) = -k(y(t) - T_0)$ , where  $T_0$  is the ambient temperature.

(a) Give the general solution to the differential equation, and find the cooling constant k.

General solution is of the form  

$$y(t) = T_0 + Ce^{-kt} = 75 + Ce^{-kt}$$
.  
 $y(0) = 395 = 75 + Ce^{\circ} \implies C = 320$ .  
 $S_0 \qquad y(t) = 75 + 320 e^{-kt}$ .  
 $y(\frac{1}{2}) = 235 = 75 + 320 e^{-kt}$ .  
 $\Rightarrow e^{-k/2} = \frac{160}{320} = \frac{1}{2}$   
 $\implies k = -2 \ln(\frac{1}{2}) = \ln(4)$ .

(b) What is the temperature of the pie t hours after it is taken out of the oven?



(c) What is the temperature of the pie 2 hours after it is taken out of the oven? Simplify your final answer as much as possible, showing all work.

$$\gamma(2) = 75 + 320 e^{-2\ln(4)} = 75 + 320 e^{\ln(4^{-2})}$$
$$= 75 + \frac{320}{16}$$
$$= 95^{\circ}F.$$