
MA 114 Exam 3 Spring 2017

Exam 3

Name: Section and/or TA:

Last Four Digits of Student ID:

Do not remove this answer page — you will return the whole exam. You will be
allowed two hours to complete this test. No books or notes may be used except for a one-
page sheet of formulas and facts. You may use a graphing calculator during the exam,
but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is
permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions.
Record your answers to the multiple choice questions on this page by filling in the cir-
cle corresponding to the correct answer.

Show all work to receive full credit on the free response problems. Unsupported an-
swers on free response problems will receive no credit.

Multiple Choice Questions

1 A1 B1 C1 D1 E

2 A2 B2 C2 D2 E

3 A3 B3 C3 D3 E

4 A4 B4 C4 D4 E

5 A5 B5 C5 D5 E

6 A6 B6 C6 D6 E

7 A7 B7 C7 D7 E

8 A8 B8 C8 D8 E

9 A9 B9 C9 D9 E

10 A10 B10 C10 D10 E

SCORE

Multiple Total
Choice 11 12 13 14 15 Score

50 10 10 10 10 10 100
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Multiple Choice Questions

1. Find the average value of sin2 x over the interval [0, 2π]. It may help to know that
sin2 x = 1

2 (1− cos(2x)) .

A. 0

B. 1/2

C. π

D. −π

E. −1/2

2. A solid is formed by rotating the area between the curves y = x and y = x2 between
x = 0 and x = 1 about the x-axis. Which of the following integrals correctly computes
the volume of the resulting solid?

A.
∫ 1

0
2πx(x− x2) dx

B.
∫ 1

0
2πx(x2 − x4) dx

C.
∫ 1

0
π(x− x2)2 dx

D.
∫ 1

0
2π
(

x2 − x4
)

dx

E.
∫ 1

0
π
(

x2 − x4
)

dx

3. A solid is made by rotating the region bounded by the curves y = x3, y = 0, x = 1,
and x = 2 about the y-axis. Which of the following integrals correctly computes the
volume of the resulting region?

A.
∫ 2

1
πx6 dx

B.
∫ 1

0
πx6 dx

C.
∫ 1

0
2πx4 dx

D.
∫ 2

1
2πx4 dx

E.
∫ 2

1
2πx

√
1 + 9x4 dx
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4. Which integral correctly computes the length of the curve y = ln (cos x) between
x = 0 and x = π/3?

A.
∫ π/3

0
sec x dx

B.
∫ π/4

0
tan x dx

C.
∫ π/3

0
tan x dx

D.
∫ π/3

0

√
1 + (ln(cos x))2 dx

E.
∫ π/3

0
2π ln(cos x)

√
1 + tan2 x dx

5. Find the area of the surface obtained by rotating the curve y = x3 about the x-axis
between x = 0 and x = 1.

A.
π

18

(
10
√

10− 1
)

B.
π

27

(
10
√

10− 1
)

C.
π

36

(
10
√

10− 1
)

D.
2π

27

(
10
√

10− 1
)

E. 2π(10
√

10− 2)
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6. Three equal masses are placed at the points P1(−3, 1), P2(0, 1 +
√

3), and P3(0, 1 −√
3). Where is their center of mass?

A. (−1, 1)

B. (0, 0)

C. (0, 1)

D. (−1, 0)

E. (1, 0)

7. Which of the following integrals correctly computes the volume of a solid whose base
is the circle x2 + y2 = 9 and whose cross-sections perpendicular to the x-axis are
squares?

A.
∫ 3

0
4(9− x2) dx

B.
∫ 3

−3
4
√

9− x2 dx

C.
∫ 3

−3
4(9− x2) dx

D.
∫ 3

0
2
√

9− x2 dx

E.
∫ 3

−3
8(9− x2)3/2 dx

x

y

x2 + y2 = 9

x
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8. Find the equation of the tangent line to the parametric curve x = t2− t, y = t2 + t + 1
at the point (0, 3).

A. y = 3x

B. y = 3x− 3

C. y = 3x + 3

D. y = 2x + 1

E. y = 1
3 x + 3

9. Which of these is the polar description of the curve x2 + y2 = 2cx? Here c is constant.

A. r = c cos θ

B. r = 2c cos θ

C. r2 = 2c cos θ

D. r2 = c cos θ

E. r = c sin θ
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10. Find the area of shaded region.

r2 = sin 2θ

A. 1/4

B. 1/2

C. π/4

D. π/2

E. 1
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Free Response Questions

11. The goal of this problem is to find the volume of the solid obtained by rotating the
region bounded by the curves x = 2− y2, x = y4 about the y-axis.

(a) (4 points) Find the points of intersection between these two curves. Graph the
region on the set of axes provided and label the x- and y-coordinates of the inter-
section points.

Solution: To find the points of intersection, solve

2− y2 = y4

y4 + y2 − 2 = 0

(y2 − 1)(y2 + 2) = 0
y = ±1

The points of intersection are (1,−1) and (1, 1).

(b) (4 points) Set up an integral for the volume of the solid.

Solution: Using the washer method, we see that the inner radius is y4 and
the outer radius is 2− y2. This leads to

V =
∫ 1

−1
π
(
(2− y2)2 − y8

)
dy.

(c) (2 points) Compute the integral.

Solution: We compute (using symmetry)

V = 2
∫ 1

0
π
(

4− 4y2 + y4 − y8
)

dy

= 2π

[
4y− 4

3
y3 +

1
5

y5 − 1
9

y9
]y=1

y=0

=
248π

45
' 17.314
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12. This problem concerns the polar curve r = 2(1+ cos θ), whose graph is shown below.

(a) (5 points) Find the arc length of the curve. It may help to remember the identity

2 cos2 θ

2
= (1 + cos θ) .

Solution: We compute

L =
∫ 2π

0

√
4(1 + cos θ)2 + 4 sin2 θ dθ

= 2
∫ π

0
2
√

2 + 2 cos θ dθ

= 4
√

2
∫ π

0

√
1 + cos θ dθ

= 4
∫ π

0
2 cos

θ

2
dθ

=

[
16 sin

θ

2

]π

0

= 16

(b) (5 points) Find the area enclosed by the curve. It may be helpful to know that

cos2 θ =
1
2
(1 + cos 2θ).
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Solution: Compute

A =
1
2

∫ 2π

0
4(1 + cos θ)2 dθ

= 2
∫ 2π

0

(
1 + 2 cos θ + cos2 θ

)
dθ

= 2
∫ 2π

0

(
1 + 2 cos θ +

1
2
+

1
2

cos(2θ)

)
dθ

= 2
[

θ + 2 sin θ +
θ

2
+

1
4

sin(2θ)

]2π

0

= 6π
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13. This problem concerns the astroid curve

x

y

1−1

1

−1

x = cos3 t, y = sin3 t, 0 ≤ t ≤ 2π.

(a) (4 points) Find the slope of tangent line to the asteroid curve in terms of the
parameter t.

Solution:

dy
dx

=
dy/dt
dx/dt

=
−3 sin2 t cos t
3 cos2 t sin t

= − sin t
cos t

= − tan t

(b) (2 points) Use calculus to determine the (x, y) coordinates of points having ver-
tical tangents.

Solution: Vertical tangents occur when cos t = 0, that is, when t = π/2,
3π/2. The corresponding points are (x, y) = (0, 1) and (x, y) = (0,−1).

(c) (2 points) Use calculus to determine the (x, y) coordinates of points having hori-
zontal tangents.

Solution: Horizontal tangents occur when sin t = 0, that is, when t = 0 or
t = π. The corresponding points are (1, 0) and (−1, 0).

(d) (2 points) Give the (x, y) coordinates of points whose tangent lines have slope
−1.

Solution: tan t = 1 for t = π/4 and t = 5π/4, corresponding to((
1/
√

2
)3

,
(

1/
√

2
)3
)

,
(
−
(

1/
√

2
)3

,−
(

1/
√

2
)3
)
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14. The goal of this problem is to find the centroid of the region bounded by the curves
y = x2 and x = y2.

(a) (2 points) Sketch the curves on the axes provided, and find their points of inter-
section.

Solution: To find the points of intersec-
tion, substitute x = y2 into y = x2 to ob-
tain the equation y = y4 or y(y3− 1) = 0.
Hence, either y = 0 or y = 1. These
solutions correspond to the points (0, 0)
and (1, 1). The blue dot shows the cen-
ter of mass at (9/20, 9/20) (see solutions
below. The blue dashed line is the line
y = x.

(b) (3 points) Set up integrals for the area A and the moments Mx and My about the
x- and y-axes.

Solution:

A =
∫ 1

0

(√
x− x2

)
dx

Mx =
1
2

∫ 1

0

[
x− x4

]
dx

My =
∫ 1

0
x
(√

x− x2
)

dx
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(c) (3 points) Evaluate the integrals you found in part (b).

Solution:

A =

[
2
3

x3/2 − x3

3

]1

0
=

1
3

Mx =
1
2

[
x2

2
− x5

5

]1

0
=

3
20

My =

[
2
5

x5/2 − x4

4

]1

0
=

3
20

(d) (2 points) Using your answer from part (c), compute the centroid of the region.

Solution:

x = 3
3

20
=

9
20

y = 3
3

20
=

9
20
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15. Set up, but do not evaluate, integrals for the volume generated by rotating the region
bounded by the given curves about the specified axis

(a) (5 points) xy = 1, x = 1, x = 2; about x-axis.

Solution:

1 2

By the disc method we have

V =
∫ 2

1
π

(
1
x

)2

dx

(b) (5 points) y = x3, y = 8, x = 0; about x = 3

Solution:

2 3

8

We’ll use the shell method. For 0 ≤ x ≤ 2 the shell at
x has height 8− x3 and radius 3− x. Hence

V =
∫ 2

0
2π(3− x)(8− x3) dx

= 2π
∫ 2

0
(24− 8x− 3x3 + x4) dx

= 2π

[
24x− 4x2 − 3

4
x4 +

x5

5

]2

0

=
264π

5
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