Exam 3

Name: _

Section:

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. Also, it helps you to show work on multiple choice problems so you can re-check your answers.

Multiple						Total
Choice	11	12	13	14	15	Score
50	10	10	10	10	10	100

Multiple Choice Questions

- 1. (5 points) Find the average value of the function $f(x) = \cos^4 x \sin x$ on $0 \le x \le \pi$.
 - A. $\frac{2}{5\pi}$ B. $\frac{5}{2\pi}$ C. 0 D. 4 E. 5
- 2. (5 points) The base of a solid *S* is the circle $x^2 + y^2 = 4$ and the parallel cross-sections perpendicular to the base are equilateral triangles. Remember that if an equilateral triangle has side length *s*, its area is $\frac{\sqrt{3}}{4}s^2$. Which of the following integrals correctly computes the volume of the solid?

3. (5 points) Which of the following is the Cartesian equation for the parametric curve $x(t) = \sin t, y(t) = 1 - \cos t$?

A. $x^{2} + y^{2} = 1$ B. $x^{2} + (y+1)^{2} = 1$ C. $x^{2} + (y-1)^{2} = 1$ D. $(x-1)^{2} + y^{2} = 1$ E. $x^{2} + y^{2} = 2xy$

4. (5 points) What is the center of mass of the triangular region shown?

5. (5 points) Which of the following integrals computes the arc length of the curve $x = 1 + 3t^2$, $y = 4 + 2t^3$ for $0 \le t \le 1$?

A.
$$\int_{0}^{1} \sqrt{1 + (6t)^{2} + (36t^{2})^{2}} dt$$

B.
$$\int_{0}^{1} \sqrt{(1 + 3t^{2})^{2} + (4 + 2t^{3})^{2}} dt$$

C.
$$\int_{0}^{1} \sqrt{3t^{2} + 2t^{3}} dt$$

D.
$$\int_{0}^{1} \sqrt{2t^{2} + 3t^{3}} dt$$

E.
$$\int_{0}^{1} \sqrt{(6t)^{2} + (6t^{2})^{2}} dt$$

6. (5 points) Which of the following integrals computes the volume of the solid obtained by rotating the region between the curves $y = x^2$ and y = 2x about the *x*-axis?

- 7. (5 points) If $x = e^t \cos t$ and $y = e^t \sin t$, then dy/dx =
 - A. $e^t \tan t$
 - B. $(\cos t + \sin t)/(\cos t \sin t)$
 - C. $(e^t \cos t)/(e^t \sin t)$
 - D. $(\cos t \sin t)/(\cos t + \sin t)$
 - E. $(e^t \sin t) / (e^t \cos t)$

8. (5 points) Find the volume of the solid obtained by rotating the region shown in the figure about the *y*-axis.

Exam 3

9. (5 points) A surface *S* is obtained by rotating the curve

$$x = t \sin t, \, y = t \cos t, \quad 0 \le t \le \pi/2$$

about the *x*-axis. The area of the surface *S* is:

A.
$$S = \int_0^{\pi/2} 2\pi t \cos(t) \sqrt{1 + t^2} dt$$

B. $S = \int_0^{\pi} 2\pi t \cos(t) \sqrt{1 + t^2} dt$
C. $S = \int_0^{\pi} 2\pi t \sin(t) \sqrt{1 + t^2} dt$
D. $S = \int_0^{\pi} 2\pi t^2 \sin(t) dt$
E. $S = \int_0^{\pi/2} 2\pi t^2 \sin(t) dt$

10. (5 points) Find the center of mass of the three equal-mass particles shown in the figure at right.

Free Response Questions

11. (10 points) Find the points (x, y) on the curve $x = \cos t$, $y = \cos 3t$, $0 \le t \le \pi$, where the tangent line is horizontal.

12. (a) (5 points) Set up but do not evaluate an integral for the exact arc length of the curve

 $x = t \sin t, \, y = t \cos t, \quad 0 \le t \le 1$

Your final answer should not involve trig functions.

(b) (5 points) Find dy/dx and d^2y/dx^2 for the curve $x = t^2 + 1$, $y = t^2 + t$. For what values of *t* is the curve concave upward?

13. (a) (5 points) Find the area enclosed by the curve $x = a \cos^2 \theta$, $y = a \sin^2 \theta$ between $\theta = 0$ and $\theta = \pi/2$.

(b) (5 points) Find the center of mass of the region bounded by the circle $x^2 + y^2 = 4$ and the *x*-axis.

14. Using the method of cylindrical shells, find the volume generated by rotating the region bounded by the curves

$$y = e^{-x^2}$$
, $y = 0$, $x = 0$, $x = 1$

about the *y*-axis.

15. Let \mathscr{R} be the region bounded by the curves $y = x^3$, y = 0, and x = 1. Find the volume obtained by rotating \mathscr{R} about the line x = 2. You may use either the washer or shell method, but be sure to make clear which method you are using and illustrate with a careful sketch.