Problem 1.

5. (5 points) local/rmb-problems/e3/arc-length-num.pg

Find the length of the curve $y=\frac{2}{3} x^{3 / 2}$ between $x=8$ and $x=24$.
The length is \qquad
Exact answers are preferred. Your answer must be correctly rounded to three decimal places, or more accurate.

Problem 2.

3. (5 points) local/rmb-problems/e3/volume-shells-mc.pg

A solid is formed by rotating the region enclosed by the curves $y=x^{3}, y=0, x=1$, and $x=2$ about the y-axis. Select the integral which computes the resulting volume.

- A. $2 \pi \int_{1}^{2} x^{4} d x$
- B. $2 \pi \int_{1}^{2} x \sqrt{1+9 x^{4}} d x$
- C. $2 \pi \int_{0}^{1} x^{4} d x$
- D. $\pi \int_{1}^{2} x^{6} d x$
- E. $\pi \int_{0}^{1} x^{6} d x$

Problem 3.

6. (5 points) local/rmb-problems/e3/surface-area-2-mc.pg

The graph of $f(x)=x^{2}$ between the points $(2,4)$ and $(3,9)$ is rotated about the x-axis. Select the integral which computes the area of the resulting surface.

- A. $2 \pi \int_{2}^{3} x \sqrt{1+4 x^{2}} d x$
- B. $2 \pi \int_{4}^{9} x^{2} \sqrt{1+x^{4}} d x$
- C. $2 \pi \int_{2}^{3} x^{2} \sqrt{1+4 x^{2}} d x$
- D. $2 \pi \int_{4}^{9} x \sqrt{1+x^{4}} d x$
- E. $2 \pi \int_{2}^{3} x \sqrt{1+x^{4}} d x$

Problem 4.

8. (5 points) local/rmb-problems/e3/center-of-mass-num.pg

Three equal masses are placed at the points $(-4,-3)$, $(4,-3$,$) , and (0,3)$. Find the coordinates (\bar{x}, \bar{y}) of the center of mass.
$\bar{x}=$ \qquad
\qquad
Exact answers are preferred. Your answer should be correctly rounded to three decimal places, or more accurate.

Problem 5.

4. (5 points) local/rmb-problems/e3/washers-2-mc.pg

Let T be the triangle that is enclosed by the lines with equations $y=x, y=2 x-1$ and $x=3$. We rotate the triangle T about the x-axis to obtain a solid of rotation S. Which of the following integrals computes the volume of the solid S ?

- A. $\pi \int_{1}^{3}\left((2 x-1)^{2}-3^{2}\right) d x$
- B. $\pi \int_{1}^{3}\left(3^{2}-x^{2}\right) d x$
- C. $\pi \int_{1}^{3}\left((2 x-1)^{2}-x^{2}\right) d x$
- D. $\pi \int_{1}^{3}(x-1)^{2} d x$
- E. $\pi \int_{1}^{5}\left((2 x-1)^{2}-x^{2}\right) d x$

Problem 6.

2. (5 points) local/rmb-problems/e3/vol-slice-num.pg

A solid lies between $x=2$ and $x=5$. The cross-section at x is a circle with radius $r=7 x^{2}$. Find the volume of the solid.
The volume is
Exact answers are preferred. Your answer should be correctly rounded to three decimal places, or more accurate.

Problem 7.

7. (5 points) local/rmb-problems/e3/moment-mc.pg

Which of the following integrals represents the y-moment M_{y} of a thin plate that covers the region enclosed by the graphs $f(x)=x^{2}-4 x+6$ and $g(x)=x+2$? The density of the plate is $\rho=3$.

- A. $M_{y}=\int_{1}^{4}\left(-x^{2}+5 x-4\right) d x$
- B. $M_{y}=3 \int_{1}^{4} x\left(-x^{2}+5 x-4\right) d x$
- C. $M_{y}=3 \int_{1}^{4}\left(-x^{2}+5 x-4\right) d x$
- D. $M_{y}=\frac{3}{2} \int_{1}^{4}\left((2+x)^{2}-\left(x^{2}-4 x+6\right)^{2}\right) d x$
- E. $M_{y}=3 \int_{1}^{4} x\left(-x^{2}+3 x-8\right) d x$

Problem 8.

1. (5 points) local/rmb-problems/e3/average-num.pg

Find the average value of the function $\sec ^{2}(x)$ on the interval $[-\pi / 6, \pi / 4]$.
The average value is \qquad

Exact answers are preferred. Your answer should be correctly rounded to three decimal places, or more accurate.
[MA 114, Exam 3, Free Response Part, April 20, 2021]
This is the free response part of Exam 3. There are 3 questions, each worth 20 points. Please write your solutions in full, clearly indicating each step leading to the final answer. Omitting details will result in a lower grade.

Question 1. (a) Find the average value $f_{\text {ave }}$ of the function $f(x)=\sin ^{2}(x)$ on the interval $[0, \pi]$.
(b) Find all the values c in $[0, \pi]$ satisfying $f(c)=f_{\text {ave }}$.

Question 2. Let \mathcal{R} be the part of the disk $x^{2}+y^{2} \leq 4$ that lies above the line $y=1$. Find the volume of the solid of revolution \mathcal{S} obtained by rotating \mathcal{R} about the x-axis. Clearly state which method (washer or cylindrtical shells) you are using.

Question 3. Find the centroid of the region in the first quadrant of the $x y$-plane bounded by the curves $y=x^{3}$ and $x=y^{3}$.

