Problem 1.

5. (5 points) local/rmb-problems/e3/arc-length-num.pg

Find the length of the curve $y=\frac{2}{3} x^{3 / 2}$ between $x=8$ and $x=24$.
The length is \qquad
Exact answers are preferred. Your answer must be correctly rounded to three decimal places, or more accurate.

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

If $y=\frac{2}{3} x^{3 / 2}$, then $y^{\prime}=\sqrt{x}$. The length is given by the integral $\int_{8}^{24} \sqrt{1+x} d x$. The anti-derivative of $(1+x)^{1 / 2}$ is $(2 / 3)(1+x)^{3 / 2}$. Thus the length of the curve will be

$$
\int_{8}^{24} \sqrt{1+x} d x=\left.\frac{2}{3}(1+x)^{3 / 2}\right|_{8} ^{24}=\frac{2}{3}\left(5^{3}-3^{3}\right)
$$

As a decimal the answer is approximately 65.3333.
Correct Answers:

- 65.3333

Problem 2.

3. (5 points) local/rmb-problems/e3/volume-shells-mc.pg

A solid is formed by rotating the region enclosed by the curves $y=x^{3}, y=0, x=1$, and $x=2$ about the y-axis. Select the integral which computes the resulting volume.

- A. $2 \pi \int_{1}^{2} x^{4} d x$
- B. $2 \pi \int_{1}^{2} x \sqrt{1+9 x^{4}} d x$
- C. $2 \pi \int_{0}^{1} x^{4} d x$
- D. $\pi \int_{1}^{2} x^{6} d x$
- E. $\pi \int_{0}^{1} x^{6} d x$

Solution: (Instructor solution preview: show the student solution after due date.)

If fix x and rotate the line segment from $(x, 0)$ to $\left(x, x^{3}\right)$ about the y-axis, we obtain a shell with with height $h=x^{3}$ and radius $r=x$. The total volume will be $=2 \pi \int_{1}^{2} r h d x=2 \pi \int_{1}^{2} x^{4} d x$.

Correct Answers:

- A

Problem 3.

6. (5 points) local/rmb-problems/e3/surface-area-2-mc.pg

The graph of $f(x)=x^{2}$ between the points $(2,4)$ and $(3,9)$ is rotated about the x-axis. Select the integral which computes the area of the resulting surface.

- A. $2 \pi \int_{2}^{3} x \sqrt{1+4 x^{2}} d x$
- B. $2 \pi \int_{4}^{9} x^{2} \sqrt{1+x^{4}} d x$
- C. $2 \pi \int_{2}^{3} x^{2} \sqrt{1+4 x^{2}} d x$
- D. $2 \pi \int_{4}^{9} x \sqrt{1+x^{4}} d x$
- E. $2 \pi \int_{2}^{3} x \sqrt{1+x^{4}} d x$

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

The differential of arc-length along the curve $\left(x, x^{2}\right)$ is $d s=$ $\sqrt{1+4 x^{2}} d x$ and the curve lies between $x=2$ and $x=3$. If we rotate the point $\left(x, x^{2}\right)$ about the x-axis we obtain a circle of radius $r=x^{2}$. The surface area of the resulting surface is $2 \pi \int_{2}^{3} r d s=2 \pi \int_{2}^{3} x^{2} \sqrt{1+4 x^{2}} d x$.

Correct Answers:

- C

Problem 4.

8. (5 points) local/rmb-problems/e3/center-of-mass-num.pg

Three equal masses are placed at the points $(-4,-3)$, $(4,-3$,$) , and (0,3)$. Find the coordinates (\bar{x}, \bar{y}) of the center of mass.
$\bar{x}=\longrightarrow, \bar{y}=$ \qquad

Exact answers are preferred. Your answer should be correctly rounded to three decimal places, or more accurate.

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

If m is the mass, then total mass $M=3 m$. The moment about the y-axis is $M_{y}=-4 m+4 m+0 m=0$.
The moment about the x-axis is $M_{x}=3 m+2 \cdot(-3) m=-3 m$. Thus we have the center of mass is $(\bar{x}, \bar{y})=\left(M_{y} / M, M_{x} / M\right)=$ $(0,-1)$.

Correct Answers:

- 0
- -1

Problem 5.

4. (5 points) local/rmb-problems/e3/washers-2-mc.pg

Let T be the triangle that is enclosed by the lines with equations $y=x, y=2 x-1$ and $x=3$. We rotate the triangle T about the x-axis to obtain a solid of rotation S. Which of the following integrals computes the volume of the solid S ?

- A. $\pi \int_{1}^{3}\left((2 x-1)^{2}-3^{2}\right) d x$
- B. $\pi \int_{1}^{3}\left(3^{2}-x^{2}\right) d x$
- C. $\pi \int_{1}^{3}\left((2 x-1)^{2}-x^{2}\right) d x$
- D. $\pi \int_{1_{5}}^{3}(x-1)^{2} d x$
- E. $\pi \int_{1}^{5}\left((2 x-1)^{2}-x^{2}\right) d x$

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

We solve $2 x-1=x$ to find that the lines $y=2 x-1$ and $y=x$ intersect at $x=1$. Thus the triangle T will lie between $x=1$ and $x=3$. The line $y=2 x-1$ lies above the line $y=x$ for $1 \leq x \leq 3$. If we intersect the solid of revolution S with a plane which passes through x and is perpendicular to the x-axis, we obtain a washer with inner radius x and outer radius $2 x-1$. The area of this washer is $A(x)=\pi\left((2 x-1)^{2}-x^{2}\right)$. Integrating, we find the volume is

$$
\pi \int_{1}^{3}\left((2 x-1)^{2}-x^{2}\right) d x
$$

Correct Answers:

- C

Problem 6.

2. (5 points) local/rmb-problems/e3/vol-slice-num.pg

A solid lies between $x=2$ and $x=5$. The cross-section at x is a circle with radius $r=7 x^{2}$. Find the volume of the solid. The volume is

Exact answers are preferred. Your answer should be correctly rounded to three decimal places, or more accurate.

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

The area of the cross-section at x is $A(x)=\pi r^{2}=\pi 7^{2} x^{4}$. The volume is $\int_{2}^{5} A(x) d x$. Evaluate this integral gives the volume as

$$
\pi 7^{2}\left(5^{5} / 5-2^{5} / 5\right)
$$

Evaluating this as a decimal gives the volume as approximately 95226.1.

Correct Answers:

- pi*7^2* (5^5/5-2^5/5)

Problem 7.

7. (5 points) local/rmb-problems/e3/moment-mc.pg

Which of the following integrals represents the y-moment M_{y} of a thin plate that covers the region enclosed by the graphs $f(x)=x^{2}-4 x+6$ and $g(x)=x+2$? The density of the plate is $\rho=3$.

- A. $M_{y}=\int_{1}^{4}\left(-x^{2}+5 x-4\right) d x$
- B. $M_{y}=3 \int_{1}^{4} x\left(-x^{2}+5 x-4\right) d x$
- C. $M_{y}=3 \int_{1}^{4}\left(-x^{2}+5 x-4\right) d x$
- D. $M_{y}=\frac{3}{2} \int_{1}^{4}\left((2+x)^{2}-\left(x^{2}-4 x+6\right)^{2}\right) d x$
- E. $M_{y}=3 \int_{1}^{4} x\left(-x^{2}+3 x-8\right) d x$

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

Solving the equation $x+2=x^{2}-4 x+6$, we find the graphs intersect at $x=1$ and $x=4$. The function $x+2$ is larger than $x^{2}-4 x+6$ in this interval.

If we take a thin strip of the plate at x with width $d x$, the strip is x units from the y-axis and has height $(x+2)-\left(x^{2}-4 x+6\right)=$ $-x^{2}+5 x-4$. The area is $\left(-x^{2}+5 x-4\right) d x$ and we multiply this area by the density to obtain the mass. Next, multiplying by the distance to the y-axis gives that the moment of this strip is $3 x\left(-x^{2}+5 x-4\right) d x$. Integrating this expression from 1 to 4 gives

$$
M_{y}=3 \int_{1}^{4} x\left(-x^{2}+5 x-4\right) d x
$$

Correct Answers:

- B

Problem 8.

1. (5 points) local/rmb-problems/e3/average-num.pg

Find the average value of the function $\sec ^{2}(x)$ on the interval $[-\pi / 6, \pi / 4]$.
The average value is
Exact answers are preferred. Your answer should be correctly rounded to three decimal places, or more accurate.

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

Since the anti-derivative of $\sec ^{2}(x)$ is $\tan (x)$, we have

$$
\int_{-\pi / 6}^{\pi / 4} \sec ^{2}(x) d x=\left.\tan (x)\right|_{x=-\pi / 6} ^{\pi / 4}=\tan (\pi / 4)-\tan (-\pi / 6)
$$

To find the average value we need to divide by the length of the interval $\pi / 4+\pi / 6$ to find the answer

$$
\frac{\tan (\pi / 4)-\tan (-\pi / 6)}{\pi / 4+\pi / 6}
$$

Evaluating this expression as a decimal gives an answer of approximately 1.20501.

Correct Answers:

- $[\tan (\mathrm{pi} / 4)-\tan (-\mathrm{pi} / 6)] /(\mathrm{pi} / 6+\mathrm{pi} / 4)$
[MA 114, Exam 3, Free Response Part, April 20, 2021]
This is the free response part of Exam 3. There are 3 questions, each worth 20 points. Please write your solutions in full, clearly indicating each step leading to the final answer. Omitting details will result in a lower grade.

10 Question 1. (a) Find the average value $f_{\text {ave }}$ of the function $f(x)=\sin ^{2}(x)$ on the interval $[0, \pi]$.

Solution: We have

(4)

10 (b) Find all the values c in $[0, \pi]$ satisfying $f(c)=f_{\text {ave }}$.
Solution: Writing

$$
\left.\begin{array}{l}
\sin ^{2} c=\frac{1}{2} \\
\text { in }[0, \pi], \text { we have } \\
\sin c=\frac{\sqrt{2}}{2},
\end{array}\right\} \text { proper setup }
$$

and

$$
c=\frac{\pi}{4} \quad \text { or } \quad c=\frac{3 \pi}{4} .
$$

(5)

If only ane c found - (3)

20 Question 2. Let \mathcal{R} be the part of the disk $x^{2}+y^{2} \leq 4$ that lies above the line $y=1$. Find the volume of the solid of revolution \mathcal{S} obtained by rotating \mathcal{R} about the x-axis. Clearly state which method (washer or cylindrical shells) you are using.

Solution: (washer method) The region \mathcal{R} is bounded by the curves $y=1$ and $y=\sqrt{4-x^{2}}$ which intersect where

$$
\sqrt{4-x^{2}}=1
$$

i.e. for $x= \pm \sqrt{3}$. Using the washer method, we have

$$
\underbrace{\operatorname{Vol}(\mathcal{S})=\pi \int_{-\sqrt{3}}^{\sqrt{3}}\left[\left(4-x^{2}\right)-1\right] d x}_{(10}=2 \pi \underbrace{\int_{0}^{\sqrt{3}}\left(3-x^{2}\right) d x=2 \pi\left[3 x-\frac{x^{3}}{3}\right]_{0}^{\sqrt{3}}=4 \sqrt{3} \pi}_{10}
$$

Solution: (cylindrical shells method) We have, using the substitution $u=4-y^{2}$,

$$
\left.\begin{array}{rl}
\operatorname{Vol}(\mathcal{S}) & =\int_{1}^{2}(2 \pi y)\left(2 \sqrt{4-y^{2}}\right) d y \\
& =-2 \pi \int_{3}^{0} \sqrt{u} d u \\
& =2 \pi \int_{0}^{3} \sqrt{u} d u \\
& =\left[\frac{4 \pi}{3} u^{3 / 2}\right]_{0}^{3} \\
& =4 \pi \sqrt{3}
\end{array}\right\}
$$

Either method is acceptable. For both methods:

- proper setup of the integral
- proper evaluation of the integral -(10)

20 Question 3. Find the centroid of the region in the first quadrant of the $x y$-plane bounded by the curves $y=x^{3}$ and $x=y^{3}$.

Solution: Let (\bar{x}, \bar{y}) be the centroid. Since the region is symmetric about the line $y=x$, the symmetry principle implies that $\bar{y}=\bar{x}$. First, compute the area of the region:

$$
\begin{equation*}
\left.A=\int_{0}^{1}\left(x^{1 / 3}-x^{3}\right) d x=\left[\frac{3 x^{4 / 3}}{4}-\frac{x^{4}}{4}\right]_{0}^{1}=\frac{1}{2}\right\} \tag{6}
\end{equation*}
$$

Then
(6) $\underbrace{\bar{x}=2 \int_{0}^{1} x\left(x^{1 / 3}-x^{3}\right) d x}=\underbrace{2 \int_{0}^{1}\left(x^{4 / 3}-x^{4}\right) d x=2\left[\frac{3 x^{7 / 3}}{7}-\frac{x^{5}}{5}\right]_{0}^{1}=\frac{16}{35}}$;

Thus the centroid is (16/35,16/35). 2
Note that without using the symmetry principle, one can compute \bar{y} directly:
as expected.

(a) Correct A - (6)
(b) Correct setup for \bar{x} or \bar{y}
[Ignore possible confusion $\dot{x} \leftrightarrow \bar{y}$]
(c) Correct computation of the integral in (b)
(d) Correct conclusion that $\bar{x}=\bar{y}=16 / 35$ either using symmetry or by computation
of both \bar{x} and $\bar{y}-(2)$

