# Exam 4

Name: \_\_\_\_

Section: \_\_\_\_\_

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. It will also help you check your answers to show work on multiple choice problems.



| Multiple |    |    |    |    |    | Total |
|----------|----|----|----|----|----|-------|
| Choice   | 11 | 12 | 13 | 14 | 15 | Score |
| 50       | 10 | 10 | 10 | 10 | 10 | 100   |
|          |    |    |    |    |    |       |
|          |    |    |    |    |    |       |

# Trig identities

- $\sin^2(x) + \cos^2(x) = 1$ ,
- $\sin^2(x) = \frac{1}{2}(1 \cos(2x))$  and  $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$
- $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$  and  $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$

#### Multiple Choice Questions

- 1. (5 points) Use the midpoint rule with 4 intervals to approximate  $\int_0^2 (4-x^2) dx$ .
  - A.  $\frac{1}{2}(\frac{16}{4} + \frac{15}{4} + \frac{12}{4} + \frac{7}{4}).$ B.  $\frac{1}{2}(\frac{63}{16} + \frac{55}{16} + \frac{39}{16} + \frac{15}{16})$ C.  $\frac{1}{4}(\frac{16}{4} + \frac{30}{4} + \frac{24}{4} + \frac{14}{4}).$ D.  $\frac{1}{6}(\frac{16}{4} + \frac{60}{4} + \frac{24}{4} + \frac{28}{4}).$ E. 0.

2. (5 points) The improper integral  $\int_2^\infty \frac{1}{x^p \ln x} dx \dots$ 

- A. converges for p = 2 and diverges for p = 0, 1.
- B. converges for p = 2, 1 and diverges for p = 0.
- C. converges for p = 2, 1, 0.
- D. diverges for p = 0, 1, 2.
- E. converges for p = 1 and diverges for p = 0, 2.

3. (5 points) Which of the following sequences converge?

A. 
$$b_n = 5^n$$
.  
B.  $c_n = \frac{(-1)^n n}{n+1}$ .  
C.  $a_n = \frac{5n-1}{12n+9}$ .

D. None of the above.

E. All of the above.

- 4. (5 points) Find the Taylor polynomial  $T_3(x)$  for  $e^{3x}$  centered at 0. What is  $T_3(1)$ ?
  - A.  $1 + 1 + \frac{1}{2} + \frac{1}{6}$ . B. 1 + 3 + 9 + 27. C.  $1 + 3 + \frac{9}{2} + \frac{27}{3}$ . D.  $1 + 3 + \frac{9}{2} + \frac{27}{6}$ . E. 1.

5. (5 points) Let  $f(x) = \sqrt{x}$ . Find a value of  $c \in [4, 9]$  so that f(c) is the average value of f(x) on the interval [4, 9].

A. 
$$\left(\frac{38}{15}\right)^2$$
.  
B.  $\frac{38}{15}$ .  
C.  $\left(\frac{27}{15}\right)^2$ .  
D.  $\frac{-8}{15}$ .  
E.  $\left(\frac{38}{5}\right)^2$ .

6. (5 points) Find the volume of a solid whose base is the unit circle  $x^2 + y^2 = 1$  and the cross sections perpendicular to the x-axis are triangles whose height and base are equal.

A.  $\frac{4}{3}$ . B.  $\frac{8}{3}$ . C. 0 D.  $\frac{2}{3}$ . E.  $\frac{16}{3}$ .

7. (5 points) A surface is created by rotating the graph of  $f(x) = 5 + \sin(6x)$  from x = 0 to x = 100 around the x-axis. What is the integral that computes the area of this surface?

A. 
$$\int_{0}^{100} 2\pi (5 + \sin(6x)) dx.$$
  
B. 
$$\int_{0}^{100} 2\pi \sqrt{1 + (6\cos(6x))^2} dx.$$
  
C. 
$$\int_{0}^{100} 2\pi (5 + \sin(6x)) \sqrt{1 + 6\cos(6x)} dx.$$
  
D. 
$$\int_{0}^{100} 2\pi (5 + 6\cos(6x)) \sqrt{1 + \sin(6x)} dx.$$
  
E. 
$$\int_{0}^{100} 2\pi (5 + \sin(6x)) \sqrt{1 + (6\cos(6x))^2} dx.$$

8. (5 points) Find the center of mass of the region between the curves y = x and  $y = x^2$  (Assume the region has constant density).

A. 
$$\left(\frac{1}{2}, \frac{2}{5}\right)$$
.  
B.  $\left(\frac{1}{12}, \frac{1}{15}\right)$ .  
C.  $\left(\frac{2}{5}, \frac{1}{2}\right)$ .  
D.  $\left(\frac{1}{15}, \frac{1}{12}\right)$ .  
E.  $\left(1, \frac{1}{5}\right)$ .

# Exam 4

9. (5 points) Which of the following is the equation for a hyperbola with vertices  $(0, \pm 2)$  and foci  $(0, \pm 5)$ ?

A. 
$$\frac{x^2}{4} - \frac{y^2}{21} = 1.$$
  
B.  $\frac{y^2}{4} + \frac{x^2}{21} = 1.$   
C.  $\frac{y^2}{4} - \frac{x^2}{21} = 1.$   
D.  $\frac{x^2}{4} + \frac{y^2}{21} = 1.$   
E.  $\frac{x^2}{21} - \frac{y^2}{4} = 1.$ 

10. (5 points) Which of the following is the direction field for the equation y' = y - 2x?





## Free Response Questions

- 11. Compute the following integrals.
  - (a) (5 points)  $\int x \sin x \cos x dx$

Solution: Let u = x and  $dv = \sin x \cos x dx$ . Then du = dx and  $v = \frac{1}{2} \sin^2 x$  $\int x \sin x \cos x dx = \frac{1}{2} x \sin^2 x - \int \frac{1}{2} \sin^2 x dx$   $= \frac{1}{2} x \sin^2 x - \frac{1}{4} \int (1 - \cos(2x)) dx$   $= \frac{1}{2} x \sin^2 x - \frac{1}{4} (x - \frac{1}{2} \sin(2x)) + C$ 

(b) (5 points) 
$$\int \frac{dx}{x^2 \sqrt{x^2 - 4}}$$
  
Solution: Take  $x = \sqrt{2} \sec \theta$ . Then  $dx = \sqrt{2} \sec \theta \tan \theta d\theta$ .  

$$\int \frac{dx}{x^2 \sqrt{x^2 - 2}} = \int \frac{\sqrt{2} \sec \theta \tan \theta d\theta}{(\sqrt{2} \sec \theta)^2 \sqrt{(\sqrt{2} \sec \theta)^2 - 2}}$$

$$= \int \frac{\sqrt{2} \sec \theta \tan \theta d\theta}{2 \sec^2 \theta \sqrt{2} \sec^2 \theta - 2} = \int \frac{\tan \theta d\theta}{2 \sec \theta \tan \theta} = \frac{1}{2} \int \cos \theta d\theta$$

$$= \frac{1}{2} \sin \theta + C = \frac{1}{2} \frac{\sqrt{x^2 - 2}}{x} + C$$

12. Determine if the following series converge or diverge. Justify your answer!

(a) (5 points) 
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{1+n^{\frac{3}{2}}}.$$
  
Solution: Compute  

$$\lim_{n \to \infty} \frac{\frac{\sqrt{n}}{1+n^{\frac{3}{2}}}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\sqrt{n}}{1+n^{\frac{3}{2}}}n = \lim_{n \to \infty} \frac{n^{\frac{3}{2}}}{1+n^{\frac{3}{2}}} = \lim_{n \to \infty} \frac{\frac{3}{2}n^{\frac{1}{2}}}{\frac{3}{2}n^{\frac{1}{2}}} = 1.$$
Since 
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges this series diverges by the limit comparison test.

(b) (5 points) 
$$\sum_{k=0}^{\infty} \left(\frac{k}{3k+1}\right)^k$$
.

Solution:

$$\lim_{k \to \infty} \left( \left( \frac{k}{3k+1} \right)^k \right)^{\frac{1}{k}} = \lim_{k \to \infty} \frac{k}{3k+1} = \frac{1}{3}$$

So the series converges by the root test.

- 13. Let S be the solid obtained by rotating the region bounded by  $y = x^2$  and  $x = y^2$  around the line x = 3.
  - (a) (3 points) Set up the integral that computes the volume of S using the disk/washer method.

Solution: 
$$\int_0^1 \pi ((3-y^2)^2 - (3-\sqrt{y})^2) dy$$

(b) (3 points) Set up the integral that computes the volume of S using the cylindrical shells method.

(c) (4 points) Choose one of these integrals and find the volume of S.

Solution: With the integral in (a)  

$$\int_{0}^{1} \pi ((3-y^{2})^{2} - (3-\sqrt{y})^{2}) dy = \int_{0}^{1} \pi (9-6y^{2}+y^{4}-9+6\sqrt{y}-y) dy$$

$$= \int_{0}^{1} \pi (-6y^{2}+y^{4}+6\sqrt{y}-y) dy$$

$$= \pi \left(-2y^{3}+\frac{1}{5}y^{5}+4y^{\frac{3}{2}}-\frac{1}{2}y^{2}\right) dy = \pi \left(-2+\frac{1}{5}+4-\frac{1}{2}\right)$$

$$= \pi \frac{20+2-5}{10} = \pi \frac{17}{10}$$

With the integral in (b)

$$\int_{0}^{1} 2\pi (3-x)(\sqrt{x}-x^{2})dx = \int_{0}^{1} 2\pi (3\sqrt{x}-3x^{2}-x^{\frac{3}{2}}+x^{3})dx$$
$$= 2\pi \left(2x^{\frac{3}{2}}-x^{3}-\frac{2}{5}x^{\frac{5}{2}}+\frac{1}{4}x^{4}\right)|_{0}^{1}$$
$$= 2\pi \left(2-1-\frac{2}{5}+\frac{1}{4}\right) = 2\pi \frac{20-8+5}{20} = \pi \frac{17}{10}$$

#### $\mathrm{MA}~114$

14. (a) (5 points) Find the slope of the tangent line to the parametric curve given by  $x = t \sin t$ ,  $y = t \cos t$  at the point  $(0, -\pi)$ .

Solution:  $\frac{dx}{dt} = \sin t + t \cos t$  and  $\frac{dy}{dt} = \cos t - t \sin t$  so  $\frac{dy}{dx} = \frac{\cos t - t \sin t}{\sin t + t \cos t}$ For  $t \sin t = 0$  we need t = 0 or  $\sin t = 0$  so  $t = k\pi$  for some integer k. For  $t \cos t = -\pi$  and  $t = k\pi$ , we have  $k\pi \cos(k\pi) = -\pi$  or  $k \cos(k\pi) = -1$ , Then k = 1. So the slope of the tangent line at  $t = \pi$  is  $\frac{dy}{dx} = \frac{\cos \pi - \pi \sin \pi}{\sin \pi + \pi \cos \pi} = \frac{-1}{-\pi} = \frac{1}{\pi}$ 

(b) (5 points) Write an integral that computes the area of the region (shown below) that is inside the polar curve  $r = 3 \sin \theta$  and outside the polar curve  $r = 2 - \sin \theta$ .



Solution: The curves intersect when  $3\sin\theta = 2 - \sin\theta$   $4\sin\theta = 2$   $\sin\theta = \frac{1}{2}$ so  $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$ . Then the area is given

by the integral  $e^{5\pi}$ 

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{2} ((3\sin\theta)^2 - (2-\sin\theta)^2) d\theta$$

## $\mathrm{MA}~114$

Г

15. (a) (5 points) For what values of k does  $y = e^{kt}$  satisfy the differential equation

$$y'' - y' - 2y = 0?$$

**Solution:** 
$$y' = ke^{kt}$$
 and  $y'' = k^2 e^{kt}$  and so we need  
 $0 = k^2 e^{kt} - ke^{kt} - 2e^{kt} = e^{kt}(k^2 - k - 2) = e^{kt}(k + 1)(k - 2)$   
This holds if  $k = -1$  or  $k = 2$ .

(b) (5 points) Find the solution to the differential equation  $y' = y^2 x$  that satisfies the initial condition y(0) = 1.

Solution: Let 
$$f(y) = y^2$$
 and  $g(x) = x$  then  

$$\int \frac{1}{y^2} dy = \int y^{-2} dy = -y^{-1} + C_1$$

$$\int x dx = \frac{1}{2}x^2 + C_2$$

$$\frac{-1}{y} = \frac{x^2 + C}{2}$$

$$y = \frac{-2}{x^2 + C}$$
Then  

$$1 = \frac{-2}{0^2 + C} = \frac{-2}{C}$$

So C = -2 and  $y = \frac{-2}{x^2 - 2}$ .