Exam 4

Name: _

Section: $_$

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. You are allowed to use notes on a single piece of 8.5" x 11" paper, front and back, including formulas and theorems. You are required to turn this page in with your exam. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS). Absolutely no communication device use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. It will also help you check your answers to show work on multiple choice problems.

Multiple Choice Questions (\mathbf{B}) (\mathbf{C}) (D) (\mathbf{E}) (\mathbf{B}) \mathbf{C} (\mathbf{D}) 1 6 (\mathbf{E}) А $\left(\mathbf{B} \right)$ (\mathbf{B}) С $\left[\mathbf{D} \right]$ (\mathbf{E}) C (\mathbf{D}) $\mathbf{2}$ 7 E B (\mathbf{B}) С (\mathbf{D}) (\mathbf{E}) \mathbf{C} (\mathbf{D}) 3 8 (\mathbf{E}) (\mathbf{B}) (\mathbf{C}) (D) (\mathbf{B}) 4 (\mathbf{C}) (\mathbf{D}) (\mathbf{E}) 9 А (\mathbf{E}) B C (D) (\mathbf{E}) B` Ċ D (\mathbf{E}) $\mathbf{5}$ 10

Multiple Choice						Total
Choice	11	12	13	14	15	Score
50	10	10	10	10	10	100

Multiple Choice Questions

1. (5 points) Find
$$\int x^2 \ln(x) \, dx$$
.
A. $x^2 \ln(x) - \frac{1}{3}x^3 + C$
B. $\frac{1}{6}x^3 \ln(x) + C$
C. $\frac{1}{3}x^3 \ln(x) - \frac{1}{9}x^3 + C$
D. $x + 2x \ln(x) + C$
E. $x^3 \ln(x) + \frac{1}{3}x^3 + C$

2. (5 points) Find the center of the ellipse with equation $y^2 + 4y + x^2 + 3x = 1$.

A.
$$\left(-\frac{3}{2}, -2\right)$$

B. $\left(\frac{3}{2}, -1\right)$
C. $(3, -1)$
D. $\left(\frac{9}{4}, 2\right)$
E. $\left(-\frac{9}{4}, -3\right)$

3. (5 points) Which of the following **sequences** converge?

A.
$$b_n = \frac{3^n}{5^n}$$

B. $c_n = \frac{16 + (-1)^n n}{n^2}$
C. $a_n = \sin\left(\frac{1}{n}\right)$
D. None of the above.

E. All of the above.

4. (5 points) Which of the following series converge?

A.
$$\sum_{n=10}^{\infty} \frac{n+1}{\sqrt{n^2 - 1}}$$

B.
$$\sum_{n=1}^{\infty} \frac{n}{(n+2)^{\frac{3}{2}}}$$

C.
$$\sum_{n=1}^{\infty} \frac{2n-1}{2n+1}$$

D.
$$\sum_{n=1}^{\infty} \frac{1}{(n^2 + 3n)^{\frac{5}{2}}}$$

- E. None of the above series converge.
- 5. (5 points) Consider the curve C parametrized by $x(t) = t^3 + 1$ and $y(t) = t^2 + t 6$. Find the slope of the tangent line to C at (2, -4).
 - A. 6 B. 1 C. $\frac{2}{3}$ D. $\frac{2}{9}$ E. $\frac{4}{3}$

6. (5 points) Evaluate $\int_0^\infty \frac{1}{(x+2)^3} dx$ A. $\frac{1}{8}$ B. $\frac{1}{3}$ C. 0 D. $-\frac{1}{4}$ E. This integral diverges $\mathrm{MA}~114$

- 7. (5 points) Find the sum of the series $\sum_{n=1}^{\infty} \left[\left(\frac{2}{3}\right)^n \left(\frac{1}{4}\right)^n \right]$
 - A. $\frac{1}{3}$ B. $\frac{5}{7}$ C. 0
 - D. This series is divergent.
 - E. $\frac{5}{3}$

8. (5 points) Find the center of mass of the system of particles given by a mass of 2 grams at (-2, 0), a mass of 5 grams at (7, 1), and a mass of 3 grams at (1, 5).

A.
$$(4, 2)$$

B. $(2, 4)$
C. $(\frac{34}{10}, 2)$
D. $(2, \frac{37}{12})$
E. $(0, \frac{27}{12})$

9. (5 points) Which of the following is the equation of a circle with center (1, 2) and radius 2?

A. $x^{2} - 2x + y^{2} - 4y + 1 = 0$ B. $x^{2} + 2x + y^{2} - 4y + 1 = 0$ C. $x^{2} - 2x - y^{2} - 4y + 1 = 0$ D. $9x^{2} - 2x + 4y^{2} - 4y + 1 = 0$ E. $2y + 4x^{2} - 4x + 1 = 0$

10. (5 points) For any constant C, the function $y(x) = Ce^{\frac{1}{2}x^2} + 1$ is a solution to the differential equation y' = x(y-1). The unique solution satisfying y(2) = 2 is

A.
$$y(x) = 2e^{\frac{1}{2}x^2}$$

B. $y(x) = e^{\frac{1}{2}x^2} + 1$
C. $y(x) = e^{\frac{1}{2}x^2} + 2$
D. $y(x) = e^{-2}e^{\frac{1}{2}x^2} + 2$
E. $y(x) = 2e^{\frac{1}{2}x^2} - 2$

1

Free Response Questions

- 11. A parametric curve C is given by $x(t) = t^2 + 1$ and $y(t) = t^4 + t^2$ for $0 \le t \le 2$.
 - (a) (4 points) Set up an integral which computes the arc length of C.

(b) (6 points) Eliminate the t parameter to find a function f(x) with the property that points on C satisfy y = f(x).

12. (a) (5 points) Find the Taylor series of the function $\frac{x}{1-\frac{2}{3}x^2}$ centered at 0.

(b) (5 points) Find the radius of convergence for the series $\sum_{n=1}^{\infty} \frac{5^n (n+1)(x-3)^n}{n+7}$.

- 13. Consider the polar curve C defined by the equation $r = 1 + \cos(2\theta)$.
 - (a) (8 points) Find an equation for the tangent line to C at the point defined by the angle $\theta = \frac{\pi}{4}$.

(b) (2 points) Set up an integral which computes the area between C and the origin for $0 \le \theta \le \frac{\pi}{2}$.

14. (a) (6 points) Set up the integral for the volume of a solid obtained by revolving the region between the graph of $f(x) = 3x^2 - x^3$ and the *x*-axis **around the** *y*-**axis**. (Hint: use the shell method.)

(b) (4 points) Evaluate the integral in part (a) to find the volume of the solid of revolution.

$$\int \frac{x}{(x-1)(x^2+1)} \, dx.$$