Exam 4

Name: _

Section: $_$

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. You are allowed to use notes on a single piece of 8.5" x 11" paper, front and back, including formulas and theorems. You are required to turn this page in with your exam. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS). Absolutely no communication device use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. It will also help you check your answers to show work on multiple choice problems.

Multiple Choice Questions (\mathbf{B}) (\mathbf{C}) (D) (\mathbf{E}) (\mathbf{B}) \mathbf{C} (\mathbf{D}) 1 6 (\mathbf{E}) А $\left(\mathbf{B} \right)$ (\mathbf{B}) С $\left[\mathbf{D} \right]$ (\mathbf{E}) C (\mathbf{D}) $\mathbf{2}$ 7 E B (\mathbf{B}) С (\mathbf{D}) (\mathbf{E}) \mathbf{C} (\mathbf{D}) 3 8 (\mathbf{E}) (\mathbf{B}) (\mathbf{C}) (D) (\mathbf{B}) 4 (\mathbf{C}) (\mathbf{D}) (\mathbf{E}) 9 А (\mathbf{E}) B C (D) (\mathbf{E}) B` Ċ D (\mathbf{E}) $\mathbf{5}$ 10

Multiple						Total
Choice	11	12	13	14	15	Score
50	10	10	10	10	10	100

Multiple Choice Questions

1. (5 points) Find
$$\int x^2 \ln(x) \, dx$$
.
A. $x^2 \ln(x) - \frac{1}{3}x^3 + C$
B. $\frac{1}{6}x^3 \ln(x) + C$
C. $\frac{1}{3}x^3 \ln(x) - \frac{1}{9}x^3 + C$
D. $x + 2x \ln(x) + C$
E. $x^3 \ln(x) + \frac{1}{3}x^3 + C$

2. (5 points) Find the center of the ellipse with equation $y^2 + 4y + x^2 + 3x = 1$.

A.
$$\left(-\frac{3}{2}, -2\right)$$

B. $\left(\frac{3}{2}, -1\right)$
C. $(3, -1)$
D. $\left(\frac{9}{4}, 2\right)$
E. $\left(-\frac{9}{4}, -3\right)$

3. (5 points) Which of the following **sequences** converge?

A.
$$b_n = \frac{3^n}{5^n}$$

B. $c_n = \frac{16 + (-1)^n n}{n^2}$
C. $a_n = \sin\left(\frac{1}{n}\right)$
D. None of the above.
E. All of the above.

4. (5 points) Which of the following series converge?

A.
$$\sum_{n=10}^{\infty} \frac{n+1}{\sqrt{n^2-1}}$$

B.
$$\sum_{n=1}^{\infty} \frac{n}{(n+2)^{\frac{3}{2}}}$$

C.
$$\sum_{n=1}^{\infty} \frac{2n-1}{2n+1}$$

D.
$$\sum_{n=1}^{\infty} \frac{1}{(n^2+3n)^{\frac{5}{2}}}$$

- E. None of the above series converge.
- 5. (5 points) Consider the curve C parametrized by $x(t) = t^3 + 1$ and $y(t) = t^2 + t 6$. Find the slope of the tangent line to C at (2, -4).
 - A. 6 **B.** 1 C. $\frac{2}{3}$ D. $\frac{2}{9}$ E. $\frac{4}{3}$
- 6. (5 points) Evaluate $\int_{0}^{\infty} \frac{1}{(x+2)^{3}} dx$ $A. \frac{1}{8}$ $B. \frac{1}{3}$ C. 0 $D. -\frac{1}{4}$ E. This integral diverges

 $\rm MA~114$

- 7. (5 points) Find the sum of the series $\sum_{n=1}^{\infty} \left[\left(\frac{2}{3}\right)^n \left(\frac{1}{4}\right)^n \right]$
 - A. $\frac{1}{3}$ B. $\frac{5}{7}$ C. 0 D. This series is divergent. E. $\frac{5}{3}$

- 8. (5 points) Find the center of mass of the system of particles given by a mass of 2 grams at (-2, 0), a mass of 5 grams at (7, 1), and a mass of 3 grams at (1, 5).
 - A. (4, 2)B. (2, 4)C. $(\frac{34}{10}, 2)$ D. $(2, \frac{37}{12})$ E. $(0, \frac{27}{12})$

9. (5 points) Which of the following is the equation of a circle with center (1, 2) and radius 2?

A. $x^{2} - 2x + y^{2} - 4y + 1 = 0$ B. $x^{2} + 2x + y^{2} - 4y + 1 = 0$ C. $x^{2} - 2x - y^{2} - 4y + 1 = 0$ D. $9x^{2} - 2x + 4y^{2} - 4y + 1 = 0$ E. $2y + 4x^{2} - 4x + 1 = 0$

- 10. (5 points) For any constant C, the function $y(x) = Ce^{\frac{1}{2}x^2} + 1$ is a solution to the differential equation y' = x(y-1). The unique solution satisfying y(2) = 2 is
 - A. $y(x) = 2e^{\frac{1}{2}x^2}$ B. $y(x) = e^{\frac{1}{2}x^2} + 1$ C. $y(x) = e^{\frac{1}{2}x^2} + 2$ D. $y(x) = e^{-2}e^{\frac{1}{2}x^2} + 1$ E. $y(x) = 2e^{\frac{1}{2}x^2} - 2$

Free Response Questions

11. A parametric curve C is given by $x(t) = t^2 + 1$ and $y(t) = t^4 + t^2$ for $0 \le t \le 2$.

(a) (4 points) Set up an integral which computes the arc length of C.

Solution: Compute the derivatives:

$$x'(t) = 2t, \quad y'(t) = 4t^3 + 2t,$$

and use the formula

$$L = \int_0^2 [x'(t)^2 + y'(t)^2]^{\frac{1}{2}} dt = \int_0^2 [4t^2 + (4t^3 + 2t)^2]^{\frac{1}{2}} dt,$$

that reduces to

$$L = 2\sqrt{2} \int_0^2 t[2t^4 + 2t^2 + 1]^{\frac{1}{2}} dt$$

GRADING: 1 point for the derivatives, 2 points for the formula, and 1 point for the final result. It isn't necessary to obtain the last expression above for L.

(b) (6 points) Eliminate the t parameter to find a function f(x) with the property that points on C satisfy y = f(x).

Solution: Solve the x-coordinate equation to obtain $t^2 = x - 1$, and substitute this into the y-coordinate equation to obtain

$$y(x) = (x - 1)^{2} + (x - 1) = x(x - 1).$$

GRADING: 3 points for solving the equation and substituting, 3 points for the solution.

12. (a) (5 points) Find the Taylor series of the function $\frac{x}{1-\frac{2}{3}x^2}$ centered at 0.

Solution: Use the Geometric series formula to get

$$\frac{1}{1 - \frac{2}{3}x^2} = \sum_{n=0}^{\infty} \left(\frac{2}{3}x^2\right)^n = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n x^{2n+1}.$$

Multiply by x to get

$$\frac{x}{1 - \frac{2}{3}x^2} = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n x^{2n}$$

GRADING: 3 points for the geometric series and 2 points for the correct result.

(b) (5 points) Find the radius of convergence for the series $\sum_{n=1}^{\infty} \frac{5^n (n+1)(x-3)^n}{n+7}.$

Solution: Ratio test (the coefficients are positive) applied to the coefficients

$$a_n = \frac{5^n(n+1)}{n+7},$$

gives

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{5^{n+1}}{5^n}\right) \left(\frac{n+7}{n+8}\right) \left(\frac{n+2}{n+1}\right) = 5.$$

The radius of convergence is $R = \frac{1}{5}$.

GRADING: 3 points for setting up the ratio test, and 2 points for the correct result. Note: They can include $(x-3)^n$ in the coefficients a_n . They will then arrive at the condition

$$5|x-3| < 1,$$

from which one concludes $R = \frac{1}{5}$.

- 13. Consider the polar curve C defined by the equation $r = 1 + \cos(2\theta)$.
 - (a) (8 points) Find an equation for the tangent line to C at the point defined by the angle $\theta = \frac{\pi}{4}$.

Solution: 1. (6 points) Slope at $\theta = \frac{\pi}{4}$. Recall $y(\theta) = r(\theta) \sin \theta$, $x(\theta) = r(\theta) \cos \theta$, and that $\frac{dy}{dx} = \frac{y'(\theta)}{x'(\theta)} = \frac{r'(\theta) \sin \theta + r(\theta) \cos \theta}{r'(\theta) \cos \theta - r(\theta) \sin \theta}$. At $\theta = \frac{\pi}{4}$, we get $r(\pi/4) = 1$, and $r'(\pi/4) = -2$ so that the slope at $\theta = \frac{\pi}{4}$ is $\frac{y'(\frac{\pi}{4})}{x'(\frac{\pi}{4})} = \frac{(-2)(\frac{\sqrt{2}}{2}) + (1)(\frac{\sqrt{2}}{2})}{(-2)(\frac{\sqrt{2}}{2}) - (1)(\frac{\sqrt{2}}{2})} = \frac{1}{3}$. 2. (2 points) For the equation for the tangent line, use y = mx + b and the point $(x, y) = (x(\pi/4), y(\pi/4) = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$, to get

$$y = \frac{1}{3}x + \frac{\sqrt{2}}{3}$$

GRADING: Part 1: 2 points for the slope formula, 2 points for evaluating the coordinates correctly, 2 points for the correct answer.

(b) (2 points) Set up an integral which computes the area between C and the origin for $0 \le \theta \le \frac{\pi}{2}$.

Solution: The formula for the area C bounded by a polar curve $r(\theta)$ is

$$A_C = \frac{1}{2} \int_0^{\frac{\pi}{2}} r(\theta)^2 \ d\theta.$$

In our case, $r(\theta) = 1 + \cos(2\theta)$, so we get

$$A_C = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 + \cos(2\theta))^2 \ d\theta.$$

GRADING: 1 point for the first integral and 1 point for the second (if the first is missing but the second is written, award 2 points.)

Exam 4

14. (a) (6 points) Set up the integral for the volume of a solid obtained by revolving the region between the graph of $f(x) = 3x^2 - x^3$ and the x-axis **around the** y-axis. (Hint: use the shell method.)

Solution: The shell method gives a basic volume element:

$$\Delta V = (2\pi x)(3x^2 - x^3)\Delta x,$$

since we are rotating around the y-axis. Since $f(x) = x^2(3-x)$, the curve satisfied f(0) = 0 and f(3) = 0. The integral expression for the volume is

$$\int_0^3 2\pi x (3x^2 - x^3) \ dx.$$

GRADING: 3 points for the set-up: correct choice of integration variable, length, and height of the shell; 3 points for writing the correct formula for V. You can also use the washer method slicing perpendicular to the *y*-axis. (Using the shell method is only a hint.) The max of the curve is at x = 2 and f(2) = 4. Then, the volume is

$$V = \int_0^4 \pi (r_o(y)^2 - r_i(y)^2) \, dy,$$

where $r_0(y)$ is the outer radius, and $r_i(y)$ is the inner radius.

(b) (4 points) Evaluate the integral in part (a) to find the volume of the solid of revolution.

Solution: The integral is

$$V = 2\pi \left[\frac{3}{4}x^4 - \frac{1}{5}x^5\right]_0^3 = 2\pi \left[3^5\left(\frac{1}{4} - \frac{1}{5}\right)\right] = \frac{243}{10}\pi = 24.3\pi.$$

GRADING: 2 points for correct integration and 2 points for the correct numerical result.

15. (10 points) Using the method of partial fractions, compute

$$\int \frac{x}{(x-1)(x^2+1)} \, dx.$$

Solution: 1. The partial fractions decomposition is:

$$\frac{x}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}.$$

2. Solving this, cross multiply to get

$$x = A(x^{2} + 1) + (Bx + C)(x - 1) = (A + B)x^{2} + (C - B)x + (A - C).$$

Equating coefficients of powers of x gives: A = -B, C - B = 1, and A = C. As a result, $A = C = \frac{1}{2}$, and $B = -\frac{1}{2}$. 3. Integrate: The integral *I* equals:

$$I = \frac{1}{2} \int \frac{dx}{x-1} - \frac{1}{2} \int \frac{x}{x^2+1} + \frac{1}{2} \int \frac{dx}{x^2+1},$$

giving

$$I = \frac{1}{2}\log|x-1| - \frac{1}{4}\log(x^2+1) + \frac{1}{2}\tan^{-1}x + C.$$

GRADING: Part 1: 3 points, part 2: 4 points, and part 3: 3 points.