Exam 4

Name: _

Section: _

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. You are allowed to use notes on a single piece of 8.5"X11" paper, front and back, including formulas and theorems. You are required to turn this page in with your exam. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. It will also help you check your answers to show work on multiple choice problems.

Multiple Choice Questions $\left(\mathbf{B}\right)$ (\mathbf{C}) (\mathbf{D}) (\mathbf{E}) (\mathbf{B}) \mathbf{C} (\mathbf{D}) 6 (\mathbf{E}) 1 А $\left(\mathbf{B} \right)$ (\mathbf{B}) С $\left[\mathbf{D} \right]$ (\mathbf{E}) C (\mathbf{D}) $\mathbf{2}$ 7 E B (\mathbf{B}) (\mathbf{D}) С (\mathbf{D}) (\mathbf{E}) (\mathbf{C}) 3 8 (\mathbf{E}) (\mathbf{B}) (\mathbf{C}) (D) (\mathbf{B}) 4 (\mathbf{C}) (\mathbf{D}) (\mathbf{E}) 9 А (\mathbf{E}) B C \mathbf{D} (\mathbf{E}) B` Ċ D (\mathbf{E}) $\mathbf{5}$ 10

Multiple						Total
Choice	11	12	13	14	15	Score
50	10	10	10	10	10	100

Multiple Choice Questions

- 1. (5 points) Consider the integral $I = \int_0^2 \sqrt{x} \, dx$. Let R_n, L_n , and T_n , denote the right, left, and trapezoid rule estimates of I. Which of the following is true?
 - A. $R_4 > I = T_4 > L_4$. B. $R_4 > T_4 > I > L_4$. C. $R_4 = T_4 = I > L_4$. D. $R_4 > I > T_4 > L_4$. E. $R_4 = I > T_4 > L_4$.
- 2. (5 points) Find the center of the ellipse with equation $y^2 + 3y + x^2 2x = 1$.
 - A. $(\frac{3}{2}, -1)$ B. $(1, -\frac{3}{2})$ C. (3, -1)D. (1, 3)E. (-1, -3)
- 3. (5 points) Which of the following sequences converge?

A.
$$b_n = \frac{2^n}{n!}$$
.
B. $c_n = \frac{16n + (-1)^n}{n}$.
C. $a_n = \ln(n^2 - 1) - \ln(n^2 + 1)$.
D. None of the above.

E. All of the above.

4. (5 points) The substitution $x = \sin(\theta)$ in the integral $\int \frac{dx}{x\sqrt{1-x^2}}$ leads to which of the following?

A.
$$\int \frac{d\theta}{\sin(\theta)}$$

B.
$$\int \frac{\cos^2(\theta)d\theta}{\sin(\theta)}$$

C.
$$\int \frac{d\theta}{\cos(\theta)}$$

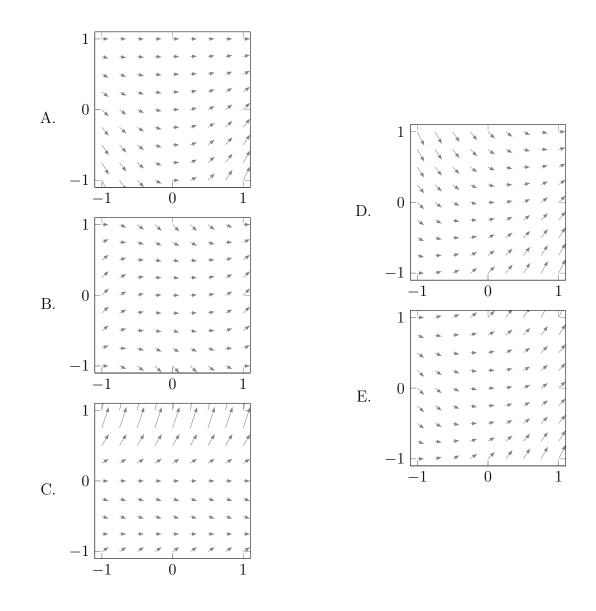
D.
$$\int \frac{d\theta}{\sec(\theta)}$$

E.
$$\int \frac{d\theta}{\sin^2(\theta)}.$$

- 5. (5 points) Consider the curve C parametrized by $x(t) = t^3 3$ and $y(t) = t^2 + t 1$. Find the slope of the tangent line to C at (-2, 1).
 - A. 3. B. $\frac{1}{3}$. C. $\frac{1}{9}$. D. 1. E. $\frac{2}{3}$.

6. (5 points) Evaluate $\int_0^\infty \frac{1}{(x+1)^2} dx$ A. $\frac{1}{2}$. B. 1. C. 0. D. -1. E. This integral diverges.

Exam 4



7. (5 points) Which of the following is the direction field for the equation y' = x(1-y)?

8. (5 points) Find the center of mass of the system of particles given by a mass of 3 grams at (-1, 0), a mass of 5 grams at (10, 0), and a mass of 4 grams at (0, 6).

A.
$$(4, 2)$$
.
B. $(2, 4)$.
C. $(2, \frac{37}{12})$.
D. $(\frac{47}{12}, 2)$.
E. $(0, \frac{47}{12})$.

9. (5 points) Find the volume of a solid obtained by revolving the region between the graph of f(x) = x(1-x) and the x-axis around the y-axis.

A.
$$\frac{\pi^2}{6}$$

B.
$$\frac{1}{6}$$

C.
$$\frac{2\pi}{3}$$

D.
$$\frac{\pi}{4}$$

E.
$$\frac{\pi}{6}$$

10. (5 points) A surface is created by rotating the graph of $f(x) = x + e^x$ from x = 0 to x = 100 around the x-axis. What is the integral that computes the area of this surface?

A.
$$\int_{0}^{100} 2\pi (x + e^{x})\sqrt{1 + (1 + e^{x})^{2}} dx.$$

B.
$$\int_{0}^{100} 2\pi x (x + e^{x}) dx.$$

C.
$$\int_{0}^{100} \pi (x + e^{x})^{2} dx.$$

D.
$$\int_{0}^{100} 2\pi x \sqrt{1 + (1 + e^{x})^{2}} dx.$$

E.
$$\int_{0}^{100} 2x (x + e^{x})^{2} dx.$$

 $\rm MA~114$

Free Response Questions

11. (a) (5 points) Compute $\int (x+1)e^x dx$.

(b) (5 points) Find the Maclaurin series for the function $\ln(1+x^2)$.

12. (10 points) Find the interval of convergence for the power series:

$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{3^n}.$$

13. (a) (5 points) Use Euler's method with step size h = .1 to estimate y(.3) if y is a solution to the differential equation y' = 2x(y+1), and y(0) = 2.

(b) (5 points) Verify that $y(x) = 3e^{x^2} - 1$ is a solution to the differential equation y' = 2x(y+1) that satisfies y(0) = 2.

14. (a) (5 points) The *cycloid* is the curve parametrized by the following functions:

$$x(\theta) = \theta - \sin(\theta),$$

$$y(\theta) = 1 - \cos(\theta).$$

Set up an integral which computes the arclength of the cycloid for $0 \le \theta \le 2\pi$.

(b) (5 points) Find the slope of the line tangent to the polar curve $r = 2\sin(\theta)$ at the point defined by $\theta = \frac{\pi}{4}$.

15. (10 points) Use a partial fraction decomposition to compute $\int \frac{1}{(x-1)(x^2+1)} dx$.