Name: \qquad Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. Find the following integrals
(a) (3 points) $\int x \sin (2 x) d x$

Solution: Set $u=x, d v=\sin (2 x) d x$ so $d u=1 d x$ and $v=-\frac{1}{2} \cos (2 x)$. Then

$$
\begin{aligned}
\int x \sin (2 x) d x & =-\frac{x}{2} \cos (2 x)+\frac{1}{2} \int \cos (2 x) 1 d x \\
& =-\frac{x}{2} \cos (2 x)+\frac{1}{4} \sin (2 x)+C
\end{aligned}
$$

(1 point) for correct $u, d v$, (1 point) for correct integration by parts, (1 point) for answer, including $+C$.
(b) (4 points) $\int_{0}^{2} x e^{x^{2}+1} d x$

Solution: Use the substitution $u=x^{2}+1$. Thus $\frac{1}{2} d u=x d x$ and when $x=0$, $u=1$ and when $x=2, u=5$ to obtain

$$
\begin{aligned}
\int_{0}^{2} x e^{x^{2}+1} d x & =\frac{1}{2} \int_{1}^{5} e^{u} d u \\
& =\left.e^{u}\right|_{u=1} ^{5} \\
& =e^{5}-e
\end{aligned}
$$

Defining u and $d u$ (1 point). Writing integral in terms of u (1 point). Changing limits (1 point). Answer (1 point).
Do not accept numerical answers without supporting work.
Allow other solution methods. If a student finds the anti-derivative in terms and x and then evaluates at 0 and 2 , give two points for correct answer.
(c) (3 points) $\int x^{3} \ln (x) d x$.

Hint: Use integration by parts with $d v=x^{3} d x$ and $u=\ln (x)$.
Solution: Following the hint, we have $u=\ln (x), d u=\frac{1}{x} d x, v=\frac{1}{4} x^{4}$ and $d v=x^{3} d x$.

Using integration by parts, we have

$$
\begin{aligned}
\int x^{3} \ln (x) d x & =\frac{1}{4} x^{4} \ln (x)-\frac{1}{4} \int x^{4} \frac{1}{x} d x \\
& =\frac{1}{4} x^{4} \ln (x)-\frac{1}{4} \int x^{3} d x \\
& =\frac{1}{4} x^{4} \ln (x)-\frac{1}{16} x^{4}+C
\end{aligned}
$$

Listing $u, d u, v$, and $d v$ (1 point). Integrating by parts correctly (1 point). Answer (1 point).
Deduct one point if $+C$ is missing, but only deduct once for this mistake.

