Name: \qquad Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (5 points) Consider the polar curve $r=2 \sin (3 \theta)$. Find the area enclosed by one leaf of the curve.

Solution: We have $r=0$ at $\theta=0$ and again when $3 \theta=\pi$ or $\theta=\pi / 3$. The area is given by $A=\int_{0}^{\pi / 3} r(\theta)^{2} d \theta$. Evaluating this integral, we have

$$
\begin{aligned}
\int_{0}^{\pi / 3} r(\theta)^{2} d \theta & =4 \int_{0}^{\pi / 3} \sin ^{2}(3 \theta) d \theta \\
& =4 \int_{0}^{\pi / 3} \frac{1-\cos (6 \theta)}{2} d \theta \\
& =\left.2\left(\theta-\frac{\sin (6 \theta)}{6}\right)\right|_{0} ^{\pi / 3} \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

(Limits of integration (1 point), integrand (2 points), use of double-angle formula (1 point), answer (1 point))
2. Consider the ellipse $\frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{9}=1$.
(a) (3 points) Find the vertices of the ellipse.
(b) (2 points) Give the lengths of the major and minor axes.

Solution: a) We obtain the given ellipse by translating the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ by $(1,-2)$. The vertices of the original ellipse are $(0, \pm 3)$. We add the point $(1,-2)$ to obtain the shifted vertices. They are

$$
(1,-2 \pm 3)=(1,-5) \text { and }(1,1)
$$

(2 points for one vertex, 1 point for second vertex)
b) The major axis is of length 6 and the minor axis is of length 4 . (1 point each)

