MA 114 Quiz 2 $\,$

Name:

Section: _

Answer all questions and show your work. Unsupported answers may receive *no credit*. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (3 points) Find the anti-derivative. $\int \sin(x) \cos^2(x) dx$.

Solution: We substitute $u = \cos(x)$ and $du = -\sin(x) dx$ (1 point) to write

$$\int \sin(x) \cos^2(x) dx = -\int u^2 du \qquad (1 \text{ point})$$
$$= -\frac{u^3}{3} + C$$
$$= -\frac{1}{3} \cos^3(x) + C \qquad (1 \text{ point})$$

Remark: We may check by differentiating.

2. (7 points) Find the anti-derivative. $\int \frac{1}{(9-x^2)^{3/2}} dx$

Solution: We use the trig substitution $x = 3\sin(u)$ and thus $dx = 3\cos(u) du$ (1 point) and $3\cos(u) = \sqrt{9 - x^2}$ (1 point) to obtain

$$\int \frac{1}{(9-x^2)^{3/2}} dx = \int \frac{3\cos(u)}{(3\cos(u))^3} du$$

= $\int \frac{1}{9\cos^2(u)} du + C$ (2 points)
= $\frac{1}{9} \int \sec^2(u) du + C$
= $\frac{1}{9} \tan(u) + C$ (1 point)
= $\frac{x}{9\sqrt{9-x^2}} + C.$ (2 points)

The last equality holds since

$$\tan(u) = \frac{3\sin(u)}{3\cos(u)} = \frac{x}{\sqrt{9 - x^2}}$$