Name: \qquad Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (3 points) Find the anti-derivative. $\int \sin (x) \cos ^{2}(x) d x$.

Solution: We substitute $u=\cos (x)$ and $d u=-\sin (x) d x$ (1 point) to write

$$
\begin{array}{rlr}
\int \sin (x) \cos ^{2}(x) d x & =-\int u^{2} d u & \text { (1 point) } \\
& =-\frac{u^{3}}{3}+C \\
& =-\frac{1}{3} \cos ^{3}(x)+C & (1 \text { point }) \tag{1point}
\end{array}
$$

Remark: We may check by differentiating.
2. (7 points) Find the anti-derivative. $\int \frac{1}{\left(9-x^{2}\right)^{3 / 2}} d x$

Solution: We use the trig substitution $x=3 \sin (u)$ and thus $d x=3 \cos (u) d u(1$ point) and $3 \cos (u)=\sqrt{9-x^{2}}$ (1 point) to obtain

$$
\begin{array}{rlr}
\int \frac{1}{\left(9-x^{2}\right)^{3 / 2}} d x & =\int \frac{3 \cos (u)}{(3 \cos (u))^{3}} d u & \\
& =\int \frac{1}{9 \cos ^{2}(u)} d u+C & (2 \text { points }) \\
& =\frac{1}{9} \int \sec ^{2}(u) d u+C & \\
& =\frac{1}{9} \tan (u)+C & (1 \text { point }) \\
& =\frac{x}{9 \sqrt{9-x^{2}}}+C . & (2 \text { points })
\end{array}
$$

The last equality holds since

$$
\tan (u)=\frac{3 \sin (u)}{3 \cos (u)}=\frac{x}{\sqrt{9-x^{2}}} .
$$

