Name: \qquad Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (7 points) Evaluate the integral $\int_{0}^{2} \frac{1}{x^{2}-2 x-3} d x$.

Solution: We write $x^{2}-2 x-3=(x-3)(x+1)$. Thus, we have a partial fractions decomposition

$$
\frac{1}{x^{2}-2 x-3}=\frac{A}{x+1}+\frac{B}{x-3}=\frac{(A+B) x+(B-3 A)}{(x+1)(x-3)} .
$$

This gives that $A+B=0$ and $B-3 A=1$. (1 point for form of decomposition, 2 points for coefficients) Solving these equations gives $B=1 / 4$ and $A=-1 / 4$. Thus we have

$$
\int \frac{1}{x^{2}-2 x-3} d x=\frac{1}{4} \int\left(\frac{1}{x-3}-\frac{1}{x+1}\right) d x=\frac{1}{4}(\ln (|x-3|)-\ln (|x+1|))+C .
$$

Using this anti-derivative, the definite integral becomes

$$
\int_{0}^{2} \frac{1}{x^{2}-2 x-3} d x=\frac{1}{4}(\ln (1)-\ln (3)-(\ln (3)-\ln (1)))=-\frac{1}{2} \ln (3) .
$$

(2 points for anti-derivative, 1 point for evaluating and 1 point for simplifying.)
2. (3 points) Let R_{n} be a right sum for the integral $\int_{0}^{4} x^{6} d x$. Is R_{n} larger or smaller than the exact value of the integral? Use a sketch to explain your answer.

Solution: Since the function x^{6} is increasing on $[0,4]$, the largest value of x^{6} on a subinterval of this interval will be at the right endpoint. Thus, any right sum will be larger than the integral. The sketch below compares the area representing one term in a right sum with the corresponding integral.

Grading: (1 point) for correct answer. (2 points) for a sketch showing at least one term from a right sum.

