Name: \qquad Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. For each of the following series compute the ratio $\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|$ and determine if the ratio test gives convergence, divergence, or no information.
(a) (2 points) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
(b) (2 points) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{42}}$

Solution: a) The limit of the ratio a_{n+1} / a_{n} is $\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=1$ and the test gives no information. b) the limit of the ratio is $\lim _{n \rightarrow \infty} \frac{2^{n+1}}{(n+1)^{42}} \frac{n^{42}}{2^{n}}=2$ and the ratio test implies the series diverges. (1 point for limit, 1 point for conclusion in each part)
2. (6 points) Give the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{2^{n} x^{n}}{n^{2}}$.

Solution: Applying the ratio test, we find $\frac{2^{n+1} x^{n+1}}{(n+1)^{2}} \frac{n^{2}}{2^{n} x^{n}}=2 x \frac{n^{2}}{(n+1)^{2}}$
and $\lim _{n \rightarrow \infty} 2 x \frac{n^{2}}{(n+1)^{2}}=2 x$ (2 points). Thus the series will converge if $|2 x|<1$ and diverges if $|2 x|>1$. The radius of convergence is $1 / 2$ (1 point). At the endpoints $x= \pm 1 / 2,(2 x)^{n} / n^{2}=(\pm 1)^{n} / n^{2}$. The series $\sum_{n=1}^{\infty} 1 / n^{2}$ is a convergent p-series and since $\left|(-1)^{n} / n^{2}\right|=1 / n^{2}$, the series $(-1)^{n} / n^{2}$ is absolutely convergent. Thus the power series converges at both endpoints. The interval of convergence is $[-1 / 2,1 / 2]$. (1 point for each endpoint, 1 point for final answer).
One may also use the alternating series test to obtain convergence at the left endpoint.

