Name: \qquad Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (4 points) Use the method of cylindrical shells to find the volume generated by rotating the region R bounded by $y=\sqrt{x}, x=0$ and $y=2$, about the y-axis.

Solution: The curves $y=2$ and $y=\sqrt{x}$ intersect at $(4,2)$. The volume of the solid is

$$
\int_{0}^{4} 2 \pi x(2-\sqrt{x}) d x=\left.2 \pi\left(x^{2}-\frac{2}{5} x^{5 / 2}\right)\right|_{0} ^{4}=\frac{32}{5} \pi .
$$

(radius of shell (1 point), height (1 point), limits of integration (1 point), answer (1 point))
2. (6 points) Consider the curve $y=x^{3}, 0 \leq x \leq 1$.
(a) (2 points) Express the arc length of the curve as an integral. (Do not evaluate the integral.)
(b) (2 points) We rotate the curve about the x-axis to obtain a surface C. Express the surface area of C as an integral.
(c) (2 points) Find the exact surface area of C.

Solution: (a) The arc length is $L=\int_{0}^{1} \sqrt{1+\left(3 x^{2}\right)^{2}} d x$.
(b) The surface area is $S=\int_{0}^{1} 2 \pi x^{3} \sqrt{1+\left(3 x^{2}\right)^{2}} d x$.
(c) Evaluating the integral from part (b) by the substitution $u=1+9 x^{4}$,

$$
S=\int_{0}^{1} 2 \pi x^{3} \sqrt{1+9 x^{4}} d x=\frac{\pi}{18} \int_{1}^{10} u^{1 / 2} d u=\left.\frac{\pi}{18} \frac{2}{3} u^{3 / 2}\right|_{1} ^{10}=\frac{\pi}{27}\left(10^{3 / 2}-1\right) .
$$

