Name: \qquad Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (5 points) Consider a lamina which is the quarter circle, $Q=\left\{(x, y): x^{2}+y^{2} \leq 4, x \geq\right.$ $0, y \geq 0\}$ with density 3 units of mass per unit of area.
Write integrals which give the moments M_{x}, M_{y} and the total mass M of the lamina. Do not evaluate the integrals.

Solution: The total mass is $M=3 \int_{0}^{2} \sqrt{4-x^{2}} d x$ (1 point). The moment M_{x} is $M_{x}=\frac{3}{2} \int_{0}^{2}\left(4-x^{2}\right) d x(2$ points $)$ and the moment M_{y} is given by $M_{y}=3 \int_{0}^{2} x \sqrt{4-x^{2}} d x$ (2 points).
-Give 2 of 4 points for moments if M_{x} and M_{y} are switched.
2. (2 points) Does the curve with parametric equations $x=t+1$ and $y=t^{3}-t-2$ contain the point $(3,4)$? If the answer is no, explain why. If the answer is yes, find t.

Solution: We want to find t with $\left(t+1, t^{3}-t-2\right)=(3,4)$. The equation $t+1=3$ is easy to solve and gives $t=2$. Substituting $t=2$ in the equation for y gives $y=2^{3}-2-2=4$. Thus the curve contains (3.4). (1 point for answer, 1 point for finding t)
3. (3 points) Consider the curve given by the parametric equations $x=2 t-4$ and $y=t^{2}$. Find a cartesian equation for the curve and put the equation in the form $y=a x^{2}+b x+c$.

Solution: We solve to express t in terms of x to obtain $t=\frac{1}{2} x+2$. Substituting for t in the equation for y gives $y=\left(\frac{1}{2} x+2\right)^{2}=\frac{1}{4} x^{2}+2 x+4$.
(1 point, solve for $t, 1$ point substitute for t in equation for $y, 1$ point for simplifying)

