Name: _

Section: _

Answer all questions and show your work. Unsupported answers may receive *no credit*. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (5 points) Consider a lamina which is the quarter circle, $Q = \{(x, y) : x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$ with density 3 units of mass per unit of area.

Write integrals which give the moments M_x , M_y and the total mass M of the lamina. Do not evaluate the integrals.

Solution: The total mass is $M = 3 \int_0^2 \sqrt{4 - x^2} \, dx$ (1 point). The moment M_x is $M_x = \frac{3}{2} \int_0^2 (4 - x^2) \, dx$ (2 points) and the moment M_y is given by $M_y = 3 \int_0^2 x \sqrt{4 - x^2} \, dx$ (2 points).

-Give 2 of 4 points for moments if M_x and M_y are switched.

2. (2 points) Does the curve with parametric equations x = t + 1 and $y = t^3 - t - 2$ contain the point (3, 4)? If the answer is no, explain why. If the answer is yes, find t.

Solution: We want to find t with $(t+1, t^3 - t - 2) = (3, 4)$. The equation t+1 = 3 is easy to solve and gives t = 2. Substituting t = 2 in the equation for y gives $y = 2^3 - 2 - 2 = 4$. Thus the curve contains (3.4). (1 point for answer, 1 point for finding t)

3. (3 points) Consider the curve given by the parametric equations x = 2t - 4 and $y = t^2$. Find a cartesian equation for the curve and put the equation in the form $y = ax^2 + bx + c$.

Solution: We solve to express t in terms of x to obtain $t = \frac{1}{2}x + 2$. Substituting for t in the equation for y gives $y = (\frac{1}{2}x + 2)^2 = \frac{1}{4}x^2 + 2x + 4$. (1 point, solve for t, 1 point substitute for t in equation for y, 1 point for simplifying)