Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: \qquad Section: \qquad

1. (a) (5 points) Find the center of mass of the region bounded by the curves $y=e^{x}, y=0, x=0$ and $x=1$. (Assume constant density.)

Solution:

$$
\begin{aligned}
& A=\int_{0}^{1} e^{x}=e^{1}-e^{0}=e-1 \\
& \bar{x}=\frac{1}{A} \int_{0}^{1} x e^{x} d x=\left.\frac{1}{e-1} e^{x}(x-1)\right|_{0} ^{1}=\frac{1}{e-1} \\
& \bar{y}=\frac{1}{A} \int_{0}^{1} \frac{1}{2}\left(e^{x}\right)^{2} d x=\left.\frac{1}{e-1} \frac{1}{2} e^{2 x} \frac{1}{2}\right|_{0} ^{1}=\frac{1}{4} \frac{e^{2}-1}{e-1}
\end{aligned}
$$

(b) (5 points) Graph $x=\sqrt{t}$ and $y=1-t$ for $t \in[0,4]$. Find the derivative at $t=1$.

Solution: $\frac{d x}{d t}=\frac{1}{2} t^{\frac{-1}{2}}$ and $\frac{d y}{d t}=-1$ so $\frac{d y}{d x}=\frac{-1}{2 \sqrt{t}}$ and at 1 this is $\frac{-1}{2}$.

