Answer all questions and show your work. Unsupported answers may receive *no credit*. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name:	Section:

1. Find the following integrals.

(a) (5 points)
$$\int z4^z dz$$

Solution: Let $u = z$ and $dv = 4^z dz$. Then $du = dz$ and $v = \frac{1}{\ln 4}4^z$ and
 $\int z4^z dz = z\frac{1}{\ln 4}4^z - \int \frac{1}{\ln 4}4^z dz = \frac{z4^z}{\ln 4} - \frac{4^z}{(\ln 4)^2} + C$

(b) (5 points) $\int t^2 \sin(3t) dt$

Solution: Take $u = t^2$ and $dv = \sin(3t)dt$. Then du = 2tdt and $v = \frac{-1}{3}\cos(3t)$ and we have $\int t^2 \sin(3t)dt = t^2 \frac{-1}{3}\cos(3t) - \int \frac{-1}{3}\cos(3t)2tdt$ $= \frac{-t^2\cos(3t)}{3} + \frac{2}{3}\int t\cos(3t)dt$

Now we integrate by parts again with u = t and $dv = \cos(3t)dt$. Then du = dv and $v = \frac{1}{3}\sin(3t)$ and

$$\int t^2 \sin(3t)dt = t^2 \frac{-1}{3}\cos(3t) - \int \frac{-1}{3}\cos(3t)2tdt$$
$$= \frac{-t^2\cos(3t)}{3} + \frac{2}{3}\left(\frac{t}{3}\sin(3t) - \int \frac{1}{3}\sin(3t)dt\right)$$
$$= \frac{-t^2\cos(3t)}{3} + \frac{2t}{9}\sin(3t) - \frac{2}{27}\cos(3t) + C$$