Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: \qquad Section: \qquad

1. Find the following integrals.
(a) (5 points) $\int z 4^{z} d z$

Solution: Let $u=z$ and $d v=4^{z} d z$. Then $d u=d z$ and $v=\frac{1}{\ln 4} 4^{z}$ and

$$
\int z 4^{z} d z=z \frac{1}{\ln 4} 4^{z}-\int \frac{1}{\ln 4} 4^{z} d z=\frac{z 4^{z}}{\ln 4}-\frac{4^{z}}{(\ln 4)^{2}}+C
$$

(b) (5 points) $\int t^{2} \sin (3 t) d t$

Solution: Take $u=t^{2}$ and $d v=\sin (3 t) d t$. Then $d u=2 t d t$ and $v=\frac{-1}{3} \cos (3 t)$ and we have

$$
\begin{aligned}
\int t^{2} \sin (3 t) d t & =t^{2} \frac{-1}{3} \cos (3 t)-\int \frac{-1}{3} \cos (3 t) 2 t d t \\
& =\frac{-t^{2} \cos (3 t)}{3}+\frac{2}{3} \int t \cos (3 t) d t
\end{aligned}
$$

Now we integrate by parts again with $u=t$ and $d v=\cos (3 t) d t$. Then $d u=d v$ and $v=\frac{1}{3} \sin (3 t)$ and

$$
\begin{aligned}
\int t^{2} \sin (3 t) d t & =t^{2} \frac{-1}{3} \cos (3 t)-\int \frac{-1}{3} \cos (3 t) 2 t d t \\
& =\frac{-t^{2} \cos (3 t)}{3}+\frac{2}{3}\left(\frac{t}{3} \sin (3 t)-\int \frac{1}{3} \sin (3 t) d t\right) \\
& =\frac{-t^{2} \cos (3 t)}{3}+\frac{2 t}{9} \sin (3 t)-\frac{2}{27} \cos (3 t)+C
\end{aligned}
$$

