Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: \qquad Section: \qquad

1. (a) (5 points) Find the integral $\int \frac{x^{2}-3 x+1}{x^{2}-3 x} d x$

Solution: First $\frac{x^{2}-3 x+1}{x^{2}-3 x}=1+\frac{1}{x(3-x)}$. Then

$$
\begin{array}{rlr}
\frac{1}{x(3-x)} & =\frac{A}{x}+\frac{B}{3-x} & \\
1 & =A(3-x)+B x & 1=A(3)
\end{array}
$$

So $A=B=\frac{1}{3}$.

$$
\begin{aligned}
\int \frac{x^{2}-3 x+1}{x^{2}-3 x} d x & =\int\left(1+\frac{1}{x(3-x)}\right) d x=\int d x+\frac{1}{3} \int \frac{1}{x} d x+\frac{1}{3} \int \frac{1}{3-x} d x \\
& =x+\frac{1}{3} \ln |x|-\frac{1}{3} \ln |3-x|+C
\end{aligned}
$$

(b) (5 points) Use the trapezoid rule and Simpson's rule to estimate the integral $\int_{0}^{2} 3^{x} d x$. For both use two steps.

Solution: The trapezoid rule gives

$$
T_{2}=\frac{1}{2}\left(3^{0}+2 * 3^{1}+3^{2}\right)=\frac{1+6+9}{2}
$$

Simpson's rule gives

$$
S_{2}=\frac{1}{3}\left(3^{0}+4 * 3^{1}+3^{2}\right)=\frac{1+12+9}{3}
$$

