Answer all questions and show your work. Unsupported answers may receive *no credit.* You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: _	Section:
1. (a)	(5 points) Find the integral $\int \frac{x^2 - 3x + 1}{x^2 - 3x} dx$
	Solution: First $\frac{x^2 - 3x + 1}{x^2 - 3x} = 1 + \frac{1}{x(3 - x)}$. Then
	$\frac{1}{x(3-x)} = \frac{A}{x} + \frac{B}{3-x}$
	1 = A(3 - x) + Bx $1 = A(3)$ $1 = B(3)$
	So $A = B = \frac{1}{3}$.
	$\int \frac{x^2 - 3x + 1}{x^2 - 3x} dx = \int \left(1 + \frac{1}{x(3 - x)}\right) dx = \int dx + \frac{1}{3} \int \frac{1}{x} dx + \frac{1}{3} \int \frac{1}{3 - x} dx$
	$= x + \frac{1}{3}\ln x - \frac{1}{3}\ln 3 - x + C$

(b) (5 points) Use the trapezoid rule and Simpson's rule to estimate the integral $\int_0^2 3^x dx$. For both use two steps.

Solution: The trapezoid rule gives

$$T_2 = \frac{1}{2}(3^0 + 2 * 3^1 + 3^2) = \frac{1+6+9}{2}$$

Simpson's rule gives

$$S_2 = \frac{1}{3}(3^0 + 4 * 3^1 + 3^2) = \frac{1 + 12 + 9}{3}$$