Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: \qquad Section: \qquad

1. (a) (3 points) Calculate the first 3 partial sums for the series

$$
\sum_{n=1}^{\infty} \frac{2+n}{1-2 n}
$$

Solution:

$$
\begin{aligned}
& \sum_{n=1}^{1} \frac{2+n}{1-2 n}=\frac{2+1}{1-2 * 1}=\frac{3}{-1}=-3 \\
& \sum_{n=1}^{2} \frac{2+n}{1-2 n}=\frac{2+1}{1-2 * 1}+\frac{2+2}{1-2 * 2}=\frac{3}{-1}+\frac{4}{-3}=-4 \frac{1}{3} \\
& \sum_{n=1}^{3} \frac{2+n}{1-2 n}=\frac{2+1}{1-2 * 1}+\frac{2+2}{1-2 * 2}+\frac{2+3}{1-2 * 3}=\frac{3}{-1}+\frac{4}{-3}+\frac{5}{-5}=-5 \frac{1}{3}
\end{aligned}
$$

(b) (3 points) Does this series converge or diverge. Justify your answer!

Solution: Since

$$
\lim _{x \rightarrow \infty} \frac{2+x}{1-2 x}=\lim _{x \rightarrow \infty}\left(\frac{2}{1-2 x}+\frac{x}{1-2 x}\right)=\lim _{x \rightarrow \infty}\left(\frac{2}{1-2 x}+\frac{1}{\frac{1}{x}-2}\right)=-\frac{1}{2}
$$

the series diverges.
2. (4 points) Use the integral test to determine if the series

$$
\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}
$$

is convergent or divergent. Show your work!

Solution:

$$
\begin{aligned}
\int \frac{x}{x^{2}+1} d x & =\int \frac{\frac{1}{2} d u}{u}=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left(x^{2}+1\right)+C \\
\int_{1}^{\infty} \frac{x}{x^{2}+1} d x & =\lim _{t \rightarrow \infty} \frac{1}{2} \ln \left(t^{2}+1\right)-\frac{1}{2} \ln \left(1^{2}+1\right)
\end{aligned}
$$

This limit does not exist and so this series diverges.

