Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: \qquad Section: \qquad

1. (a) (5 points) Does the series $\sum_{n=3}^{\infty} \frac{n+2}{(n+1)^{3}}$ converge or diverge? Justify your answer!

Solution: We use the limit comparison test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{n+2}{(n+1)^{3}}}{\frac{1}{n^{2}}} & =\lim _{n \rightarrow \infty} \frac{n+2}{(n+1)^{3}} \frac{n^{2}}{1}=\lim _{n \rightarrow \infty} \frac{n^{3}+2 n^{2}}{n^{3}+3 n^{2}+3 n+1} \\
& =\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}}{1+\frac{3}{n}+\frac{3}{n^{2}}+\frac{1}{n^{3}}}=1
\end{aligned}
$$

Since $\sum_{n=3}^{\infty} \frac{1}{n^{2}}$ (the exponent on n is >1) converges the original series does too.
(b) (5 points) Does the series $\sum_{n=1}^{\infty} \frac{n!}{100^{n}}$ converge or diverge? Justify your answer!

Solution: We use the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{n!}{100^{n}}}{\frac{(n+1)!}{100^{n+1}}} & =\lim _{n \rightarrow \infty} \frac{n!}{100^{n}} \frac{100^{n+1}}{(n+1)!}=\lim _{n \rightarrow \infty} \frac{100}{n+1} \\
& =0
\end{aligned}
$$

Since this limit is less than 1 the series converges.

