Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: \qquad Section: \qquad

1. (a) (5 points) What is the radius of convergence for $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1) 2^{n}}(x-1)^{n}$? What is the interval of convergence?

Solution:

$$
\begin{aligned}
\left|\frac{\frac{(-1)^{n+1}}{(2(n+1)-1) 2^{n+1}}(x-1)^{n+1}}{\frac{(-1)^{n}}{(2 n-1) 2^{n}}(x-1)^{n}}\right| & =\left|\frac{(-1)^{n+1}(x-1)^{n+1}}{(2(n+1)-1) 2^{n+1}} \frac{(2 n-1) 2^{n}}{(-1)^{n}(x-1)^{n}}\right| \\
& =\left|\frac{(2 n-1)}{2(2 n+1)}(x-1)\right| \rightarrow \frac{1}{2}|x-1|
\end{aligned}
$$

So the radius of convergence is 2 .
Evaluating at -1 ,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1) 2^{n}}((-1)-1)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1) 2^{n}}(-2)^{n}=\sum_{n=1}^{\infty} \frac{2^{n}}{(2 n-1) 2^{n}}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)}
$$

This diverges by the integral test. Evaluating at 3,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1) 2^{n}}(3-1)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1) 2^{n}}(2)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1)}
$$

and this converges by the alternating series test. So the interval of convergence is $(-1,3]$.
(b) (5 points) Find a power series representation for $f(x)=\frac{x}{2 x^{2}+1}$.

Solution: We can write $\frac{x}{2 x^{2}+1}$ as $x\left(\frac{1}{1-\left(-2 x^{2}\right)}\right)$. Since $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \frac{1}{1-\left(-2 x^{2}\right)}=$ $\sum_{n=0}^{\infty}\left(-2 x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-2)^{n} x^{2 n}$ and $f(x)=\sum_{n=0}^{\infty}(-2)^{n} x^{2 n+1}$.

