Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: \qquad Section: \qquad

1. (4 points) Use the definition of a Taylor series to find the first two nonzero terms of the Taylor series for $\cos ^{2} x$ centered at $a=0$.

Solution: If $f(x)=\cos ^{2} x$ then $f^{\prime}(x)=2 \cos x(-\sin x)=-2 \cos x \sin x$. Differentiating again $f^{\prime \prime}(x)=-2(\cos x \cos x+(-\sin x) \sin x)=-2\left(\cos ^{2} x-\sin ^{2} x\right)$. Evaluating at 0 gives $f(0)=1$, $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=-2(1)=-2$. The first three terms (and first 2 nonzero terms) of the Taylor series are

$$
1+\frac{0}{1!}(x-0)+\frac{-2}{2!}(x-0)^{2}=1+0 x-x^{2}
$$

2. (a) (4 points) Find the average value of $f(x)=(x-3)^{2}$ on $[2,5]$.

Solution: $\int_{2}^{5}(x-3)^{2} d x=\left.\frac{1}{3}(x-3)^{3}\right|_{2} ^{5}=\frac{1}{3}\left((5-3)^{3}-(2-3)^{3}\right)=\frac{1}{3}(8-(-1))=3$. So the average value is $\frac{1}{5-2} 3=\frac{1}{3} 3=1$.
(b) (2 points) Find a c so that $f(c)$ is the average value of f.

Solution: $1=(x-3)^{2}$ so either $1=x-3$ or $-1=x-3$. In the first case $x=4$ and in the second $x=2$. Either of these are solutions.

