Name:
Section:
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (5 points) Evaluate the integral $\int_{0}^{\pi / 2} \cos ^{3}(x) d x$.

Solution: We use the identity, $\cos ^{2}(x)=1-\sin ^{2}(x)$ to rewrite the integral as

$$
\int_{0}^{\pi / 2} \cos ^{3}(x) d x=\int_{0}^{\pi / 2}\left(1-\sin ^{2}(x)\right) \cos (x) d x
$$

Making the substitution $u=\sin (x), x=0$ corresponds to $u=0, x=\pi / 2$ corresponds to $u=1$, and $d u=\cos (x) d x$ we obtain

$$
\int_{0}^{\pi / 2}\left(1-\sin ^{2}(x)\right) \cos (x) d x=\int_{0}^{1}\left(1-u^{2}\right) d u=\left.\left(u-\frac{u^{3}}{3}\right)\right|_{u=0} ^{1}=2 / 3
$$

Trig identity (1 point), substitute $u=\sin (x), d u=\cos (x) d x$ (1 point), change limits (1 point), integrate polynomial (1 point), answer (1 point).
2. (5 points) Evaluate the anti-derivative $\int \sqrt{4-x^{2}} d x$. Simplify your answer so that it does not contain any trigonometric functions. (Your answer may contain inverse trigonometric functions.)

Solution: We make the substitution $x=2 \sin (u)$ and then $d x=2 \cos (u) d u$. This gives

$$
\int \sqrt{4-x^{2}} d x=2 \int \sqrt{4-4 \sin ^{2}(u)} \cos (u) d u=4 \int \cos ^{2}(u) d u
$$

Using the double angle formula, we have $\cos ^{2}(u)=\frac{1+\cos (2 u)}{2}$ and then integrating gives

$$
4 \int \frac{1}{2}+\frac{1}{2} \cos (2 u) d u=2 u+\sin (2 u)+C
$$

Finally, writing $\sin (2 u)=2 \sin (u) \cos (u), 2 \sin (u)=x$ and $2 \cos (u)=\sqrt{4-x^{2}}$ we may express the answer as

$$
2 u+\sin (2 u)+C=2 \sin ^{-1}(x / 2)+\frac{x}{2} \sqrt{4-x^{2}}+C=2 \sin ^{-1}(x / 2)+\frac{1}{2} x \sqrt{4-x^{2}}+C .
$$

Substitute $x=2 \sin (u), d x=2 \cos (u)$ (1 point), simplifying $\sqrt{4-x^{2}}=2 \cos (u)$ (1 point), identity for $\cos ^{2}(u)$ (1 point), anti-derivative of $2(1+\cos (2 u))$ (1 point), simplifying result (1 point).

