Name:

Section: _

Answer all questions and show your work. Unsupported answers may receive *no credit*. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (5 points) Evaluate the integral
$$\int_0^{\pi/2} \cos^3(x) \, dx$$
.

Solution: We use the identity, $\cos^2(x) = 1 - \sin^2(x)$ to rewrite the integral as

$$\int_0^{\pi/2} \cos^3(x) \, dx = \int_0^{\pi/2} (1 - \sin^2(x)) \cos(x) \, dx$$

Making the substitution $u = \sin(x)$, x = 0 corresponds to u = 0, $x = \pi/2$ corresponds to u = 1, and $du = \cos(x) dx$ we obtain

$$\int_0^{\pi/2} (1 - \sin^2(x)) \cos(x) \, dx = \int_0^1 (1 - u^2) \, du = \left(u - \frac{u^3}{3}\right) \Big|_{u=0}^1 = 2/3.$$

Trig identity (1 point), substitute $u = \sin(x)$, $du = \cos(x) dx$ (1 point), change limits (1 point), integrate polynomial (1 point), answer (1 point).

2. (5 points) Evaluate the anti-derivative $\int \sqrt{4-x^2} \, dx$. Simplify your answer so that it does not contain any trigonometric functions. (Your answer may contain inverse trigonometric functions.)

Solution: We make the substitution $x = 2\sin(u)$ and then $dx = 2\cos(u) du$. This gives

$$\int \sqrt{4 - x^2} \, dx = 2 \int \sqrt{4 - 4\sin^2(u)} \, \cos(u) \, du = 4 \int \cos^2(u) \, du.$$

Using the double angle formula, we have $\cos^2(u) = \frac{1 + \cos(2u)}{2}$ and then integrating gives

$$4\int \frac{1}{2} + \frac{1}{2}\cos(2u)\,du = 2u + \sin(2u) + C$$

Finally, writing $\sin(2u) = 2\sin(u)\cos(u)$, $2\sin(u) = x$ and $2\cos(u) = \sqrt{4-x^2}$ we may express the answer as

$$2u + \sin(2u) + C = 2\sin^{-1}(x/2) + \frac{x}{2}\sqrt{4 - x^2} + C = 2\sin^{-1}(x/2) + \frac{1}{2}x\sqrt{4 - x^2} + C.$$

Substitute $x = 2\sin(u)$, $dx = 2\cos(u)$ (1 point), simplifying $\sqrt{4-x^2} = 2\cos(u)$ (1 point), identity for $\cos^2(u)$ (1 point), anti-derivative of $2(1 + \cos(2u))$ (1 point), simplifying result (1 point).