Name:
Section: \qquad
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=3 \cdot 2^{-n}$ for $n=1,2,3, \ldots$.
(a) (2 points) Find the limit of the sequence $\lim _{n \rightarrow \infty} a_{n}$.
(b) (4 points) Explain why the series $\sum_{n=1}^{\infty} a_{n}$ is convergent and find the sum.

Solution: a) We have $\lim _{n \rightarrow \infty} a_{n}=0$.
b) This is a geometric series with ratio $r=1 / 2$ and first term $a_{1}=3 / 2$. Since the ratio satisfies $|r|<1$, the series is convergent and the sum is

$$
\sum_{n=1}^{\infty} 3 \cdot 2^{-n}=\frac{a_{1}}{1-r}=\frac{3}{2} \cdot \frac{1}{1-1 / 2}=3
$$

Grading: a) answer (2 points) b) ratio $r=1 / 2$ (1 point), identify as convergent geometric series with ratio satisfying $|r|<1$ (1 point), first term (1 point), answer (1 point).
Compare WeBWorK B2 \#5.
2. Suppose that a recursive sequence is defined by $b_{1}=1$ and $b_{n}=\frac{1}{2}\left(b_{n-1}+\frac{3}{b_{n-1}}\right)$.
(a) (2 points) Find b_{3}.
(b) (2 points) Suppose that the sequence b_{n} is convergent and $B=\lim _{n \rightarrow \infty} b_{n}$ exists. Find an equation that B satisfies.

Solution: a) We have $b_{2}=\left(1+3 / b_{1}\right) / 2=(1+3) / 2=2$. Then $b_{3}=(2+3 / 2) / 2=7 / 4$ or 1.75 .
b) Taking the limit of the relation $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(b_{n-1}+3 / b_{n-1}\right)$ gives the equation

$$
B=\frac{1}{2}\left(B+\frac{3}{B}\right) .
$$

Simplifying gives the equation $B^{2}-3=0$.
Grading: a) 1 point for $b_{2}, 1$ point for b_{3}. b) 2 points for a correct equation, simplification is not required.
Compare WeBWorK B1, \#1, 5.

